hash函数与加密
❶ 哈希算法原理和用途
哈希是一种加密算法,也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。(1)hash函数与加密扩展阅读
Hash算法的特点:
易压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。
易计算:对于任意给定的消息,计算其Hash值比较容易。
单向性:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。
抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的.设计中很难做到这一点。
有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。
高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。
❷ 哈希(hash) - 哈希算法的应用
通过之前的学习,我们已经了解了哈希函数在散列表中的应用,哈希函数就是哈希算法的一个应用。那么在这里给出哈希的定义: 将任意长度的二进制值串映射为固定长度的二进制值串,这个映射规则就是哈希算法,得到的二进制值串就是哈希值 。
要设计一个好的哈希算法并不容易,它应该满足以下几点要求:
哈希算法的应用非常广泛,在这里就介绍七点应用:
有很多着名的哈希加密算法:MD5、SHA、DES...它们都是通过哈希进行加密的算法。
对于加密的哈希算法来说,有两点十分重要:一是很难根据哈希值反推导出原始数据;二是散列冲突的概率要很小。
当然,哈希算法不可能排除散列冲突的可能,这用数学中的 鸽巢原理 就可以很好解释。以MD5算法来说,得到的哈希值为一个 128 位的二进制数,它的数据容量最多为 2 128 bit,如果超过这个数据量,必然会出现散列冲突。
在加密解密领域没有绝对安全的算法,衫基一般来说,只要解密的计算量极其庞大,我们就可以认为这种加密方法是较为安全的。
假设我们有100万个图片,如果我们在图片中寻找某一个图片是非常耗时的,这是我们就可以使用哈希算法的原理为图片设置唯一标识。比如,我们可以从图片的二进制码串开头取100个字节,从中间取100个字节,从结尾取100个字节,然后将它们合并,并使用哈希算法计算得到一个哈希值,将其作为图片的唯一标识。
使用这个唯一标识判断图片是否在图库中,这可以减少甚多工作量。
在传输消息的过程中,我们担心通信数据被人篡改,这时就可以使用哈希函数进行数据校验。比如BT协议中就使用哈希栓发进行数据校验。
在散列表那一篇中我们就讲过散列函数的应用,相比于其它应用,散列函数对于散列算法冲突的要求低很多(我们可以通过开放寻址法或链表法解决冲突),同时散列函数对于散列算法是否能逆向解密也并不关心。
散列函数比较在意函数的执行效率,至于其它要求,在之前的我们已经讲过,就不再赘述了。
接下来的三个应用主要是在分布式系统中的应用
复杂均衡的算法很多,如何实现一个会话粘滞的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。
最简单的办法是我们根据客户端的 IP 地址或会话 ID 创建一个映射关系。但是这样很浪费内存,客户端上线下线,服务器扩容等都会导致映射失效,维护成本很大。
借助哈希算法,我们可以很轻松的解决这些问题:对客户端的 IP 地址或会话 ID 计算哈希值,将取得的哈希值域服务器的列表的大小进行取模运算,最后得到的值就是被路由到的服务器的编号。
假设有一个非常大的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?
分析一下,这个问题有两个难点:一是搜索日志很大,没办法放到一台机器的内存中;二是如果用一台机器处理这么大的数据,处理时间会很长。
针对这两个难点,我们可以先对数据进行分片,然后使用多台机器处理,提高处理速度。具体思路:使用 n 台机器并行处理,从日志文件中读出每个搜索关键词,通过哈希局销函数计算哈希值,然后用 n 取模,最终得到的值就是被分配的机器编号。
这样,相同的关键词被分配到了相同的机器上,不同机器只要记录属于自己那部分的关键词的出现次数,最终合并不同机器上的结果即可。
针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片思路,可以突破单机内存桐塌游、CPU等资源的限制。
处理思路和上面出现的思路类似:对数据进行哈希运算,对机器数取模,最终将存储数据(可能是硬盘存储,或者是缓存分配)分配到不同的机器上。
你可以看一下上图,你会发现之前存储的数据在新的存储规则下全部失效,这种情况是灾难性的。面对这种情况,我们就需要使用一致性哈希算法。
哈希算法是应用非常广泛的算法,你可以回顾上面的七个应用感受一下。
其实在这里我想说的是一个思想: 用优势弥补不足 。
例如,在计算机中,数据的计算主要依赖 CPU ,数据的存储交换主要依赖内存。两者一起配合才能实现各种功能,而两者在性能上依然无法匹配,这种差距主要是: CPU运算性能对内存的要求远高于现在的内存能提供的性能。
也就是说,CPU运算很快,内存相对较慢,为了抹平这种差距,工程师们想了很多方法。在我看来,散列表的使用就是利用电脑的高计算性能(优势)去弥补内存速度(不足)的不足,你仔细思考散列表的执行过程,就会明白我的意思。
以上就是哈希的全部内容
❸ 2.哈希加密 & base64加密
一、哈希HASH
哈希(散列)函数 MD5 SHA1/256/512 HMAC
Hash的特点:
1.算法是公开的
2.对相同数据运算,得到的结果是一样的
3.对不同数据运算,如MD5得到的结果是128位,32个字符的十六进制表示,没法逆运算
1.MD5加密
MD5加密的特点:
不可逆运算
对不同的数据加密的结果是定长的32位字符(不管文件多大都一样)
对相同的数据加密,得到的结果是一样的(也就是复制)。
抗修改性 : 信息“指纹”,对原数据进行任何改动,哪怕只修改一个字节,所得到的 MD5 值都有很大区别.
弱抗碰撞 : 已知原数据和其 MD5 值,想找到一个具有相同 MD5 值的数据(即伪造数据)是非常困难的.
强抗碰撞: 想找到两个不同数据,使他们具有相同的 MD5 值,是非常困难的
MD5 应用:
一致性验证:MD5将整个文件当做一个大文本信息,通过不可逆的字符串变换算法,产生一个唯一的MD5信息摘要,就像每个人都有自己独一无二的指纹,MD5对任何文件产生一个独一无二的数字指纹。
那么问题来了,你觉得这个MD5加密安全吗?其实是不安全的,不信的话可以到这个网站试试:md5破解网站。可以说嗖地一下就破解了你的MD5加密!
2.SHA加密
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。当让除了SHA1还有SHA256以及SHA512等。
二、base64加密
1.Base64说明
描述:Base64可以成为密码学的基石,非常重要。
特点:可以将任意的二进制数据进行Base64编码
结果:所有的数据都能被编码为并只用65个字符就能表示的文本文件。
65字符:A~Z a~z 0~9 + / =
对文件进行base64编码后文件数据的变化:编码后的数据~=编码前数据的4/3,会大1/3左右。
2.命令行进行Base64编码和解码
编码:base64 123.png -o 123.txt
解码:base64 123.txt -o test.png -D
2.Base64编码原理
1)将所有字符转化为ASCII码;
2)将ASCII码转化为8位二进制;
3)将二进制3个归成一组(不足3个在后边补0)共24位,再拆分成4组,每组6位;
4)统一在6位二进制前补两个0凑足8位;
5)将补0后的二进制转为十进制;
6)从Base64编码表获取十进制对应的Base64编码;
处理过程说明:
a.转换的时候,将三个byte的数据,先后放入一个24bit的缓冲区中,先来的byte占高位。
b.数据不足3byte的话,于缓冲区中剩下的bit用0补足。然后,每次取出6个bit,按照其值选择查表选择对应的字符作为编码后的输出。
c.不断进行,直到全部输入数据转换完成。
❹ 密码学HASH与对称加密
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
MD5信息摘要算法 (英语:MD5 Message-Digest Algorithm),一种被广泛使用的 密码散列函数 ,可以产生出一个128位(16 字节 )的散列值(hash value),用于确保信息传输完整一致。2004年,证实MD5算法无法防止碰撞(collision)(如网站: CMD5 ),因此不适用于安全性认证,如 SSL 公开密钥认证或是 数字签名 等用途。
MD5 是哈希算法的一种。
密码加密常见的有以下几种方式:
HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,并在 IPSec 和其他网络协议(如 SSL )中得以广泛应用,现在已经成为事实上的Internet安全标准。它可以与任何迭代散列函数捆绑使用。
如上图中,共有两个流程:
授权设备登录流程:
1、输入账号过后,就把账号作为参数向服务器发送请求
2、服务器根据账号生成对应的key,并传递给客户端
3、客户端拿到key,进行HMAC运算,并将运算结果的哈希值传给服务器
其他设备登录流程:
1、输入账号过后,在本地缓存中找服务器传过来的key,有就登录,没有就把账号作为参数向服务器发送请求
2、服务器要先看这个账号是否开启了设备锁,没有开启就不允许登录,开启了,就向授权设备发送请求,是否授权,如果授权,就将这个账号的key传给其他客户端
3、客户端拿到key,进行HMAC运算,并将运算结果的哈希值传给服务器
但是在这之中有一个潜在的安全隐患问题: 当别人拿到账号和传递的哈希值过后,也就能拿到登录权限,从而不安全。
为了防止上面的问题,注册流程不变,服务器还是保存的有加了key的HMAC哈希值。
1、只是登录的时候,客户端将哈希值与时间戳拼接过后,进行MD5加密,再传给服务器。
2、服务器将注册保存的账号对应的HMAC哈希值,分别与当前时间,和前一分钟拼接再MD5加密,再和客户端传过来的进行匹配,匹配成功则登录成功,否则不成功。
3、注意这里的时间戳是服务器给的时间戳。
常见的加密算法:
应用模式:
AES加密解密都是用到的CCCrypt函数,并且需要导入 CommonCrypto 框架。
❺ 什么是Hash函数Hash函数在密码学中有什么作用
Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
HASH主要用于信息安全领域中加密算法,他把一些不同长度的信息转化成杂乱的128位的编码里,叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系
Hash算法在信息安全方面的应用主要体现在以下的3个方面:
1) 文件校验
我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。
MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。
2) 数字签名
Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。 对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。
3) 鉴权协议
如下的鉴权协议又被称作"挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。