古典密码对什么加密
Ⅰ 什么属于古典密码
凯撒密码、维吉尼亚密码、置换密码属于古典密码。
古典密码是一种使用简单替换和移位等操作来进行传统加密的密码体制。它主要采用固定的加密方法进行加密,常常基于字母表顺序,包括凯撒密码、维吉尼亚密码、置换密码、移位密码、列置换密码、多表替换密码等。
这些密码在现代密码学中已经过时,因为它们的加密方式被认为不够安全。其轮樱中凯撒密码旁桐郑采用单字母替代的方式,如果加密偏移量固定,可以通过爆破等方式轻易地破解。而维吉尼亚密码采用多表替换,但如果密匙过短或者存在相关性,也容易被破解。
古典密码技术的价值:
1、历史价值
古典密码是密码学的重要组成部分,它反映了人类对加密技术的早期研究和应用。通过学习古典密码,可以深入了解密码学的历史发展和演变过程,掌握密码学基础知识和理论。
2、研究价值
虽然古典密码已经被现代密码算法所取代,但是它依然具有一定的研究价值。比如,在密码破解领域,选手们需要使用各种手段来尝试破解古典密码,这有助于提高密码学的研究水平。
3、教学价值
古典密码是密码学中最简单、易懂的加密方式之一,因此在密码学教学中经常被作为入门课程内容。通过学习古典密码,学生们可以初步了解加密原理和方法,为后续深入研究打下基础。
4、比赛价值
古典密码是CTF等网络安全比赛常用的题目之一,选手们需要通过各种手段来破运颂解密码,提高技术水平。同时,它也可以作为密码学竞赛、数学建模等比赛的重要内容。
Ⅱ 古典密码包括两大类
1.古典密码编码方法归根结底主要有两种,即替换密码和置换密码。
Ⅲ 古典密码两种加密方式
古典加密算法:置换密码
置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码有时又称为换位密码。
矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而形成密文。例如,明文为attack
begins
at
five,密钥为cipher,将明文按照每行6列的形式排在矩阵中,形成如下形式:
a
t
t
a
c
k
b
e
g
i
n
s
a
t
f
i
v
e
根据密钥cipher中各字母在字母表中出现的先后顺序,给定一个置换:
1
2
3
4
5
6
f
=
1
4
5
3
2
6
根据上面的置换,将原有矩阵中的字母按照第1列,第4列,第5列,第3列,第2列,第6列的顺序排列,则有下面形式:
a
a
c
t
t
k
b
i
n
g
e
s
a
i
v
f
t
e
从而得到密文:aacttkbingesaivfte
Ⅳ 古典加密算法有哪些 古典加密算法
世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。