当前位置:首页 » 密码管理 » 对称加密字符串

对称加密字符串

发布时间: 2023-07-25 08:04:19

㈠ 属于对称加密算法的有哪些

主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。

对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。优点在于加解密的高速度和使用长密钥时的难破解性,缺点是交易双方都使用同样钥匙,安全性得不到保证。

对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信的安全性至关重要。



(1)对称加密字符串扩展阅读

常见的加密算法

DES算法是密码体制中的对称密码体制,把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位。

3DES是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高。

RC2和RC4是对称算法,用变长密钥对大量数据进行加密,比DES快。

IDEA算法是在DES算法的基础上发展出来的,是作为迭代的分组密码实现的,使用128位的密钥和8个循环。

RSA是由RSA公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法。

DSA,即数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法。

AES是高级加密标准对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael算法。

Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。

㈡ 对称加密算法以及使用方法

加密的原因:保证数据安全

加密必备要素:1、明文/密文    2、秘钥    3、算法

秘钥:在密码学中是一个定长的字符串、需要根据加密算法确定其长度

加密算法解密算法一般互逆、也可能相同

常用的两种加密方式:

对称加密:秘钥:加密解密使用同一个密钥、数据的机密性双向保证、加密效率高、适合加密于大数据大文件、加密强度不高(相对于非对称加密)

非对称加密:秘钥:加密解密使用的不同秘钥、有两个密钥、需要使用密钥生成算法生成两个秘钥、数据的机密性只能单向加密、如果想解决这个问题、双向都需要各自有一对秘钥、加密效率低、加密强度高

                    公钥:可以公开出来的密钥、公钥加密私钥解密

                    私钥:需要自己妥善保管、不能公开、私钥加密公钥解密

安全程度高:多次加密

按位异或运算

凯撒密码:加密方式    通过将铭文所使用的字母表按照一定的字数平移来进行加密

mod:取余

加密三要素:明文/密文(字母)、秘钥(3)、算法(向右平移3/-3)

安全常识:不要使用自己研发的算法、不要钻牛角尖、没必要研究底层实现、了解怎么应用;低强度的密码比不进行任何加密更危险;任何密码都会被破解;密码只是信息安全的一部分

保证数据的机密性、完整性、认证、不可否认性

计算机操作对象不是文字、而是由0或1排列而成的比特序列、程序存储在磁盘是二进制的字符串、为比特序列、将现实的东西映射为比特序列的操作称为编码、加密又称之为编码、解密称之为解码、根据ASCII对照表找到对应的数字、转换成二进制

三种对称加密算法:DES\3DES\ AES  

DES:已经被破解、除了用它来解密以前的明文、不再使用

密钥长度为56bit/8、为7byte、每隔7个bit会设置一个用于错误检查的比特、因此实际上是64bit

分组密码(以组为单位进行处理):加密时是按照一个单位进行加密(8个字节/64bit为一组)、每一组结合秘钥通过加密算法得到密文、加密后的长度不变

3DES:三重DES为了增加DES的强度、将DES重复三次所得到的一种加密算法   密钥长度24byte、分成三份  加密--解密--加密 目的:为了兼容DES、秘钥1秘钥2相同==三个秘钥相同  ---加密一次        密钥1秘钥3相同--加密三次    三个密钥不相同最好、此时解密相当于加密、中间的一次解密是为了有三个密钥相同的情况

此时的解密操作与加密操作互逆,安全、效率低

数据先解密后加密可以么?可以、解密相当于加密、加密解密说的是算法

AES:(首选推荐)底层算法为Rijndael   分组长度为128bit、密钥长度为128bit到256bit范围内就可以   但是在AES中、密钥长度只有128bit\192bit\256bit     在go提供的接口中、只能是16字节(128bit)、其他语言中秘钥可以选择

目前为止最安全的、效率高

底层算法

分组密码的模式:

按位异或、对数据进行位运算、先将数据转换成二进制、按位异或操作符^、相同为真、不同为假、非0为假    按位异或一次为加密操作、按位异或两次为解密操作:a和b按位异或一次、结果再和b按位异或

ECB : 如果明文有规律、加密后的密文有规律不安全、go里不提供该接口、明文分组分成固定大小的块、如果最后一个分组不满足分组长度、则需要补位

CBC:密码链

问题:如何对字符串进行按位异或?解决了ECB的规律可查缺点、但是他不能并行处理、最后一个明文分组也需要填充 、初始化向量长度与分组长度相同

CFB:密文反馈模式

不需要填充最后一个分组、对密文进行加密

OFB:

不需要对最后一组进行填充

CTR计数器:

不需要对最后一组进行填充、不需要初始化向量     

Go中的实现

官方文档中:

在创建aes或者是des接口时都是调用如下的方法、返回的block为一个接口

func NewCipher(key [] byte ) ( cipher . Block , error )

type Block interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Encrypt(dst, src []byte)

    // 解密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Decrypt(dst, src []byte)

}

Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。

Block的Encrypt/Decrypt也能进行加密、但是只能加密第一组、因为aes的密钥长度为16、所以进行操作的第一组数据长度也是16

如果分组模式选择的是cbc

func NewCBCEncrypter(b Block, iv []byte) BlockMode    加密

func NewCBCDecrypter(b Block, iv []byte) BlockMode    解密

加密解密都调用同一个方法CryptBlocks()

并且cbc分组模式都会遇到明文最后一个分组的补充、所以会用到加密字节的大小

返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。iv自己定义

返回的BlockMode同样也是一个接口类型

type BlockMode interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址

    CryptBlocks(dst, src []byte)

}

BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器

返回的BlockMode其实是一个cbc的指针类型中的b和iv

# 加密流程: 

1. 创建一个底层使用des/3des/aes的密码接口 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes 

2. 如果使用的是cbc/ecb分组模式需要对明文分组进行填充

3. 创建一个密码分组模式的接口对象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr

 4. 加密, 得到密文

流程:

填充明文:

先求出最后一组中的字节数、创建新切片、长度为新切片、值也为切片的长度、然后利用bytes.Reapet将长度换成字节切片、追加到原明文中

//明文补充

func padPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、求出需要填充的个数

    padNum := blockSize-len(plaintText) % blockSize

    //2、对填充的个数进行操作、与原明文进行合并

    newPadding := []byte{byte(padNum)}

    newPlain := bytes.Repeat(newPadding,padNum)

    plaintText = append(plaintText,newPlain...)

    return plaintText

}

去掉填充数据:

拿去切片中的最后一个字节、得到尾部填充的字节个数、截取返回

//解密后的明文曲调补充的地方

func createPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、得到最后一个字节、并将字节转换成数字、去掉明文中此数字大小的字节

    padNum := int(plaintText[len(plaintText)-1])

    newPadding := plaintText[:len(plaintText)-padNum]

    return newPadding

}

des加密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、对明文进行填充

3、创建一个cbc模式的接口、需要创建iv初始化向量、返回一个blockmode对象

4、加密、调用blockmode中的cryptBlock函数进行加密、参数为目标参数和源参数

//des利用分组模式cbc进行加密

func EncryptoText(plaintText []byte,key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、对明文进行填充

    newText := padPlaintText(plaintText,cipherBlock.BlockSize())

    //3、选择分组模式、其中向量的长度必须与分组长度相同

    iv := make([]byte,cipherBlock.BlockSize())

    blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

des解密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、创建一个cbc模式的接口、需要创建iv初始化向量,返回一个blockmode对象

3、加密、调用blockmode中的cryptBlock函数进行解密、参数为目标参数和源参数

4、调用去掉填充数据的方法

//des利用分组模式cbc进行解密

func DecryptoText(cipherText []byte, key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc分组模式接口

    iv := []byte("12345678")

    blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)

    //3、解密

    blockMode.CryptBlocks(cipherText,cipherText)

    //4、将解密后的数据进行去除填充的数据

    newText := clearPlaintText(cipherText,cipherBlock.BlockSize())

    return newText

}

Main函数调用

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量" +

        "(一个数组、数组的长度与明文分组相等、数据来源:负责加密的人提供,加解密使用的初始化向量必须相同)")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("1234abcd")

    //调用加密函数

    cipherText := EncryptoText(plaintText,key)

    newPlaintText := DecryptoText(cipherText,key)

    fmt.Println(string(newPlaintText))

}

AES加密解密相同、所以只需要调用一次方法就可以加密、调用两次则解密

推荐是用分组模式:cbc、ctr

aes利用分组模式cbc进行加密

//对明文进行补充

func paddingPlaintText(plaintText []byte , blockSize int ) []byte {

    //1、求出分组余数

    padNum := blockSize - len(plaintText) % blockSize

    //2、将余数转换为字节切片、然后利用bytes.Repeat得出有该余数的大小的字节切片

    padByte := bytes.Repeat([]byte{byte(padNum)},padNum)

    //3、将补充的字节切片添加到原明文中

    plaintText = append(plaintText,padByte...)

    return plaintText

}

//aes加密

func encryptionText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、明文补充

    newText := paddingPlaintText(plaintText,block.BlockSize())

    //3、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCEncrypter(block,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

//解密后的去尾

func clearplaintText(plaintText []byte, blockSize int) []byte {

    //1、得到最后一个字节、并转换成整型数据

    padNum := int(plaintText[len(plaintText)-1])

    //2、截取明文字节中去掉得到的整型数据之前的数据、此处出错、没有用len-padNum

    newText := plaintText[:len(plaintText)-padNum]

    return newText

}

//aes解密

func deCryptionText(crypherText []byte, key []byte ) []byte {

    //1、创建aes对象

    block, err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCDecrypter(block,iv)

    //3、解密

    blockMode.CryptBlocks(crypherText,crypherText)

    //4、去尾

    newText := clearplaintText(crypherText,block.BlockSize())

    return newText

}

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("12345678abcdefgh")

    //调用加密函数

    cipherText := encryptionText(plaintText,key)

    //调用解密函数

    newPlaintText := deCryptionText(cipherText,key)

    fmt.Println("解密后",string(newPlaintText))

}

//aes--ctr加密

func encryptionCtrText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建ctr对象,虽然ctr模式不需要iv,但是go中使用ctr时还是需要iv

    iv := []byte("12345678abcdefgh")

    stream := cipher.NewCTR(block,iv)

    stream.XORKeyStream(plaintText,plaintText)

    return plaintText

}

func main() {

//aes--ctr加密解密、调用两次即为解密、因为加密解密函数相同stream.XORKeyStream

    ctrcipherText := encryptionCtrText(plaintText, key)

    ctrPlaintText := encryptionCtrText(ctrcipherText,key)

    fmt.Println("aes解密后", string(ctrPlaintText))

}

英文单词:

明文:plaintext     密文:ciphertext   填充:padding/fill    去掉clear  加密Encryption  解密Decryption

㈢ 对称加密算法的加密算法主要有哪些

1、3DES算法

3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:

3DES加密过程为:C=Ek3(Dk2(Ek1(M)))

3DES解密过程为:M=Dk1(EK2(Dk3(C)))

2、Blowfish算法

BlowFish算法用来加密64Bit长度的字符串。

BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。

BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。

分别说明如下:

密钥预处理:

BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:

1)用sbox填充key_sbox

2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。

比如说:选的key是"abcdefghijklmn"。则异或过程为:

key_pbox[0]=pbox[0]abcdefgh;

key_pbox[1]=pbox[1]ijklmnab;

…………

…………

如此循环,直到key_pbox填充完毕。

3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;

4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];

5)i+2,继续第4步,直到key_pbox全部被替换;

6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。

信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。

3、RC5算法

RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。

(3)对称加密字符串扩展阅读:

普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。

对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。

这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。

㈣ 用C语言编写一个对称加密算法,对字符串加密

/*本问题的关键是如何交换ASCII的二进制位,下面提供简短算法,并附上VC++6.0环境下的运行结果截图。

*/

#include<stdio.h>

charswapbit(charc){

chari,num=0,ch[8];

for(i=0;i<8;i++){

ch[i]=c&1;

c=(c>>1);

}

for(i=0;i<8;i++){

num=2*num+ch[i];

}

returnnum;

}

intmain(){

charch;

for(ch='A';ch<='Z';ch++){

printf("%c=%X:%X ",ch,ch,0XFF&swapbit(ch));

}

return0;

}

㈤ 如何使用java实现对字符串的DES加密和解密

java加密字符串可以使用des加密算法,实例如下:
package test;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.security.*;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
/**
* 加密解密
*
* @author shy.qiu
* @since http://blog.csdn.net/qiushyfm
*/
public class CryptTest {
/**
* 进行MD5加密
*
* @param info
* 要加密的信息
* @return String 加密后的字符串
*/
public String encryptToMD5(String info) {
byte[] digesta = null;
try {
// 得到一个md5的消息摘要
MessageDigest alga = MessageDigest.getInstance("MD5");
// 添加要进行计算摘要的信息
alga.update(info.getBytes());
// 得到该摘要
digesta = alga.digest();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
// 将摘要转为字符串
String rs = byte2hex(digesta);
return rs;
}
/**
* 进行SHA加密
*
* @param info
* 要加密的信息
* @return String 加密后的字符串
*/
public String encryptToSHA(String info) {
byte[] digesta = null;
try {
// 得到一个SHA-1的消息摘要
MessageDigest alga = MessageDigest.getInstance("SHA-1");
// 添加要进行计算摘要的信息
alga.update(info.getBytes());
// 得到该摘要
digesta = alga.digest();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
// 将摘要转为字符串
String rs = byte2hex(digesta);
return rs;
}
// //////////////////////////////////////////////////////////////////////////
/**
* 创建密匙
*
* @param algorithm
* 加密算法,可用 DES,DESede,Blowfish
* @return SecretKey 秘密(对称)密钥
*/
public SecretKey createSecretKey(String algorithm) {
// 声明KeyGenerator对象
KeyGenerator keygen;
// 声明 密钥对象
SecretKey deskey = null;
try {
// 返回生成指定算法的秘密密钥的 KeyGenerator 对象
keygen = KeyGenerator.getInstance(algorithm);
// 生成一个密钥
deskey = keygen.generateKey();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
// 返回密匙
return deskey;
}
/**
* 根据密匙进行DES加密
*
* @param key
* 密匙
* @param info
* 要加密的信息
* @return String 加密后的信息
*/
public String encryptToDES(SecretKey key, String info) {
// 定义 加密算法,可用 DES,DESede,Blowfish
String Algorithm = "DES";
// 加密随机数生成器 (RNG),(可以不写)
SecureRandom sr = new SecureRandom();
// 定义要生成的密文
byte[] cipherByte = null;
try {
// 得到加密/解密器
Cipher c1 = Cipher.getInstance(Algorithm);
// 用指定的密钥和模式初始化Cipher对象
// 参数:(ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE,UNWRAP_MODE)
c1.init(Cipher.ENCRYPT_MODE, key, sr);
// 对要加密的内容进行编码处理,
cipherByte = c1.doFinal(info.getBytes());
} catch (Exception e) {
e.printStackTrace();
}
// 返回密文的十六进制形式
return byte2hex(cipherByte);
}
/**
* 根据密匙进行DES解密
*
* @param key
* 密匙
* @param sInfo
* 要解密的密文
* @return String 返回解密后信息
*/
public String decryptByDES(SecretKey key, String sInfo) {
// 定义 加密算法,
String Algorithm = "DES";
// 加密随机数生成器 (RNG)
SecureRandom sr = new SecureRandom();
byte[] cipherByte = null;
try {
// 得到加密/解密器
Cipher c1 = Cipher.getInstance(Algorithm);
// 用指定的密钥和模式初始化Cipher对象
c1.init(Cipher.DECRYPT_MODE, key, sr);
// 对要解密的内容进行编码处理
cipherByte = c1.doFinal(hex2byte(sInfo));
} catch (Exception e) {
e.printStackTrace();
}
// return byte2hex(cipherByte);
return new String(cipherByte);
}
// /////////////////////////////////////////////////////////////////////////////
/**
* 创建密匙组,并将公匙,私匙放入到指定文件中
*
* 默认放入mykeys.bat文件中
*/
public void createPairKey() {
try {
// 根据特定的算法一个密钥对生成器
KeyPairGenerator keygen = KeyPairGenerator.getInstance("DSA");
// 加密随机数生成器 (RNG)
SecureRandom random = new SecureRandom();
// 重新设置此随机对象的种子
random.setSeed(1000);
// 使用给定的随机源(和默认的参数集合)初始化确定密钥大小的密钥对生成器
keygen.initialize(512, random);// keygen.initialize(512);
// 生成密钥组
KeyPair keys = keygen.generateKeyPair();
// 得到公匙
PublicKey pubkey = keys.getPublic();
// 得到私匙
PrivateKey prikey = keys.getPrivate();
// 将公匙私匙写入到文件当中
doObjToFile("mykeys.bat", new Object[] { prikey, pubkey });
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
}
/**
* 利用私匙对信息进行签名 把签名后的信息放入到指定的文件中
*
* @param info
* 要签名的信息
* @param signfile
* 存入的文件
*/
public void signToInfo(String info, String signfile) {
// 从文件当中读取私匙
PrivateKey myprikey = (PrivateKey) getObjFromFile("mykeys.bat", 1);
// 从文件中读取公匙
PublicKey mypubkey = (PublicKey) getObjFromFile("mykeys.bat", 2);
try {
// Signature 对象可用来生成和验证数字签名
Signature signet = Signature.getInstance("DSA");
// 初始化签署签名的私钥
signet.initSign(myprikey);
// 更新要由字节签名或验证的数据
signet.update(info.getBytes());
// 签署或验证所有更新字节的签名,返回签名
byte[] signed = signet.sign();
// 将数字签名,公匙,信息放入文件中
doObjToFile(signfile, new Object[] { signed, mypubkey, info });
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 读取数字签名文件 根据公匙,签名,信息验证信息的合法性
*
* @return true 验证成功 false 验证失败
*/
public boolean validateSign(String signfile) {
// 读取公匙
PublicKey mypubkey = (PublicKey) getObjFromFile(signfile, 2);
// 读取签名
byte[] signed = (byte[]) getObjFromFile(signfile, 1);
// 读取信息
String info = (String) getObjFromFile(signfile, 3);
try {
// 初始一个Signature对象,并用公钥和签名进行验证
Signature signetcheck = Signature.getInstance("DSA");
// 初始化验证签名的公钥
signetcheck.initVerify(mypubkey);
// 使用指定的 byte 数组更新要签名或验证的数据
signetcheck.update(info.getBytes());
System.out.println(info);
// 验证传入的签名
return signetcheck.verify(signed);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将二进制转化为16进制字符串
*
* @param b
* 二进制字节数组
* @return String
*/
public String byte2hex(byte[] b) {
String hs = "";
String stmp = "";
for (int n = 0; n < b.length; n++) {
stmp = (java.lang.Integer.toHexString(b[n] & 0XFF));
if (stmp.length() == 1) {
hs = hs + "0" + stmp;
} else {
hs = hs + stmp;
}
}
return hs.toUpperCase();
}
/**
* 十六进制字符串转化为2进制
*
* @param hex
* @return
*/
public byte[] hex2byte(String hex) {
byte[] ret = new byte[8];
byte[] tmp = hex.getBytes();
for (int i = 0; i < 8; i++) {
ret[i] = uniteBytes(tmp[i * 2], tmp[i * 2 + 1]);
}
return ret;
}
/**
* 将两个ASCII字符合成一个字节; 如:"EF"--> 0xEF
*
* @param src0
* byte
* @param src1
* byte
* @return byte
*/
public static byte uniteBytes(byte src0, byte src1) {
byte _b0 = Byte.decode("0x" + new String(new byte[] { src0 }))
.byteValue();
_b0 = (byte) (_b0 << 4);
byte _b1 = Byte.decode("0x" + new String(new byte[] { src1 }))
.byteValue();
byte ret = (byte) (_b0 ^ _b1);
return ret;
}
/**
* 将指定的对象写入指定的文件
*
* @param file
* 指定写入的文件
* @param objs
* 要写入的对象
*/
public void doObjToFile(String file, Object[] objs) {
ObjectOutputStream oos = null;
try {
FileOutputStream fos = new FileOutputStream(file);
oos = new ObjectOutputStream(fos);
for (int i = 0; i < objs.length; i++) {
oos.writeObject(objs[i]);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
oos.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
/**
* 返回在文件中指定位置的对象
*
* @param file
* 指定的文件
* @param i
* 从1开始
* @return
*/
public Object getObjFromFile(String file, int i) {
ObjectInputStream ois = null;
Object obj = null;
try {
FileInputStream fis = new FileInputStream(file);
ois = new ObjectInputStream(fis);
for (int j = 0; j < i; j++) {
obj = ois.readObject();
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
ois.close();
} catch (IOException e) {
e.printStackTrace();
}
}
return obj;
}
/**
* 测试
*
* @param args
*/
public static void main(String[] args) {
CryptTest jiami = new CryptTest();
// 执行MD5加密"Hello world!"
System.out.println("Hello经过MD5:" + jiami.encryptToMD5("Hello"));
// 生成一个DES算法的密匙
SecretKey key = jiami.createSecretKey("DES");
// 用密匙加密信息"Hello world!"
String str1 = jiami.encryptToDES(key, "Hello");
System.out.println("使用des加密信息Hello为:" + str1);
// 使用这个密匙解密
String str2 = jiami.decryptByDES(key, str1);
System.out.println("解密后为:" + str2);
// 创建公匙和私匙
jiami.createPairKey();
// 对Hello world!使用私匙进行签名
jiami.signToInfo("Hello", "mysign.bat");
// 利用公匙对签名进行验证。
if (jiami.validateSign("mysign.bat")) {
System.out.println("Success!");
} else {
System.out.println("Fail!");
}
}
}

㈥ 常用的对称密码算法有哪些

对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:

DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

㈦ 密码学基础(二):对称加密

加密和解密使用相同的秘钥称为对称加密。

DES:已经淘汰
3DES:相对于DES有所加强,但是仍然存在较大风险
AES:全新的对称加密算法。

特点决定使用场景,对称加密拥有如下特点:

速度快,可用于频率很高的加密场景。

使用同一个秘钥进行加密和解密。

可选按照128、192、256位为一组的加密方式,加密后的输出值为所选分组位数的倍数。密钥的长度不同,推荐加密轮数也不同,加密强度也更强。

例如:
AES加密结果的长度由原字符串长度决定:一个字符为1byte=4bit,一个字符串为n+1byte,因为最后一位为'',所以当字符串长度小于等于15时,AES128得到的16进制结果为32位,也就是32 4=128byte,当长度超过15时,就是64位为128 2byte。

因为对称加密速度快的特点,对称加密被广泛运用在各种加密场所中。但是因为其需要传递秘钥,一旦秘钥被截获或者泄露,其加密就会玩完全破解,所以AES一般和RSA一起使用。

因为RSA不用传递秘钥,加密速度慢,所以一般使用RSA加密AES中锁使用的秘钥后,再传递秘钥,保证秘钥的安全。秘钥安全传递成功后,一直使用AES对会话中的信息进行加密,以此来解决AES和RSA的缺点并完美发挥两者的优点,其中相对经典的例子就是HTTPS加密,后文会专门研究。

本文针对ECB模式下的AES算法进行大概讲解,针对每一步的详细算法不再该文讨论范围内。

128位的明文被分成16个字节的明文矩阵,然后将明文矩阵转化成状态矩阵,以“abcdefghijklmnop”的明文为例:

同样的,128位密钥被分成16组的状态矩阵。与明文不同的是,密文会以列为单位,生成最初的4x8x4=128的秘钥,也就是一个组中有4个元素,每个元素由每列中的4个秘钥叠加而成,其中矩阵中的每个秘钥为1个字节也就是8位。

生成初始的w[0]、w[1]、w[2]、w[3]原始密钥之后,通过密钥编排函数,该密钥矩阵被扩展成一个44个组成的序列W[0],W[1], … ,W[43]。该序列的前4个元素W[0],W[1],W[2],W[3]是原始密钥,用于加密运算中的初始密钥加,后面40个字分为10组,每组4个32位的字段组成,总共为128位,分别用于10轮加密运算中的轮密钥加密,如下图所示:

之所以把这一步单独提出来,是因为ECB和CBC模式中主要的区别就在这一步。

ECB模式中,初始秘钥扩展后生成秘钥组后(w0-w43),明文根据当前轮数取出w[i,i+3]进行加密操作。

CBC模式中,则使用前一轮的密文(明文加密之后的值)和当前的明文进行异或操作之后再进行加密操作。如图所示:

根据不同位数分组,官方推荐的加密轮数:

轮操作加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。

当第一组加密完成时,后面的组循环进行加密操作知道所有的组都完成加密操作。

一般会将结果转化成base64位,此时在iOS中应该使用base64编码的方式进行解码操作,而不是UTF-8。

base64是一种编码方式,常用语传输8bit字节码。其编码原理如下所示:

将原数据按照3个字节取为一组,即为3x8=24位

将3x8=24的数据分为4x6=24的数据,也就是分为了4组

将4个组中的数据分别在高位补上2个0,也就成了8x4=32,所以原数据增大了三分之一。

根据base64编码表对数据进行转换,如果要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节怎么办,Base64用x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉。

举个栗子:Man最后的结果就是TWFu。

计算机中所有的数据都是以0和1的二进制来存储,而所有的文字都是通过ascii表转化而来进而显示成对应的语言。但是ascii表中存在许多不可见字符,这些不可见字符在数据传输时,有可能经过不同硬件上各种类型的路由,在转义时容易发生错误,所以规定了64个可见字符(a-z、A-Z、0-9、+、/),通过base64转码之后,所有的二进制数据都是可见的。

ECB和CBC是两种加密工作模式。其相同点都是在开始轮加密之前,将明文和密文按照128/192/256进行分组。以128位为例,明文和密文都分为16组,每组1个字节为8位。

ECB工作模式中,每一组的明文和密文相互独立,每一组的明文通过对应该组的密文加密后生成密文,不影响其他组。

CBC工作模式中,后一组的明文在加密之前先使用前一组的密文进行异或运算后再和对应该组的密文进行加密操作生成密文。

为简单的分组加密。将明文和密文分成若干组后,使用密文对明文进行加密生成密文
CBC

加密:

解密:

㈧ 什么是3DES对称加密算法

DES加密经过下面的步骤
1、提供明文和密钥,将明文按照64bit分块(对应8个字节),不足8个字节的可以进行填充(填充方式多种),密钥必须为8个字节共64bit
填充方式:

当明文长度不为分组长度的整数倍时,需要在最后一个分组中填充一些数据使其凑满一个分组长度。
* NoPadding
API或算法本身不对数据进行处理,加密数据由加密双方约定填补算法。例如若对字符串数据进行加解密,可以补充\0或者空格,然后trim

* PKCS5Padding
加密前:数据字节长度对8取余,余数为m,若m>0,则补足8-m个字节,字节数值为8-m,即差几个字节就补几个字节,字节数值即为补充的字节数,若为0则补充8个字节的8
解密后:取最后一个字节,值为m,则从数据尾部删除m个字节,剩余数据即为加密前的原文。
例如:加密字符串为为AAA,则补位为AAA55555;加密字符串为BBBBBB,则补位为BBBBBB22;加密字符串为CCCCCCCC,则补位为CCCCCCCC88888888。

* PKCS7Padding
PKCS7Padding 的填充方式和PKCS5Padding 填充方式一样。只是加密块的字节数不同。PKCS5Padding明确定义了加密块是8字节,PKCS7Padding加密快可以是1-255之间。
2、选择加密模式

**ECB模式** 全称Electronic Codebook模式,译为电子密码本模式
**CBC模式** 全称Cipher Block Chaining模式,译为密文分组链接模式
**CFB模式** 全称Cipher FeedBack模式,译为密文反馈模式
**OFB模式** 全称Output Feedback模式,译为输出反馈模式。
**CTR模式** 全称Counter模式,译为计数器模式。
3、开始加密明文(内部原理--加密步骤,加密算法实现不做讲解)

image
1、将分块的64bit一组组加密,示列其中一组:将此组进行初始置换(IP置换),目的是将输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位。
2、开始Feistel结构的16次转换,第一次转换为:右侧数据R0和子密钥经过轮函数f生成用于加密左侧数据的比特序列,与左侧数据L0异或运算,
运算结果输出为加密后的左侧L0,右侧数据则直接输出为右侧R0。由于一次Feistel轮并不会加密右侧,因此需要将上一轮输出后的左右两侧对调后才正式完成一次Feistel加密,
3、DES算法共计进行16次Feistel轮,最后一轮输出后左右两侧无需对调,每次加密的子密钥不相同,子密钥是通过秘钥计算得到的。
4、末置换是初始置换的逆过程,DES最后一轮后,左、右两半部分并未进行交换,而是两部分合并形成一个分组做为末置换的输入
DES解密经过下面的步骤
1、拿到密文和加密的密钥
2、解密:DES加密和解密的过程一致,均使用Feistel网络实现,区别仅在于解密时,密文作为输入,并逆序使用子密钥。
3、讲解密后的明文去填充 (padding)得到的即为明文
Golang实现DES加密解密
package main

import (
"fmt"
"crypto/des"
"bytes"
"crypto/cipher"
)

func main() {
var miwen,_= DESEncode([]byte("hello world"),[]byte("12345678"))
fmt.Println(miwen) // [11 42 146 232 31 180 156 225 164 50 102 170 202 234 123 129],密文:最后5位是补码
var txt,_ = DESDecode(miwen,[]byte("12345678"))
fmt.Println(txt) // [104 101 108 108 111 32 119 111 114 108 100]明码
fmt.Printf("%s",txt) // hello world
}
// 加密函数
func DESEncode(orignData, key []byte)([]byte,error){

// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}

// 明文分组,不足的部分加padding
txt := PKCS5Padding(orignData,block.BlockSize())

// 设定加密模式,为了方便,初始向量直接使用key充当了(实际项目中,最好别这么做)
blockMode := cipher.NewCBCEncrypter(block,key)

// 创建密文长度的切片,用来存放密文字节
crypted :=make([]byte,len(txt))

// 开始加密,将txt作为源,crypted作为目的切片输入
blockMode.CryptBlocks(crypted,txt)

// 将加密后的切片返回
return crypted,nil
}
// 加密所需padding
func PKCS5Padding(ciphertext []byte,size int)[]byte{
padding := size - len(ciphertext)%size
padTex := bytes.Repeat([]byte{byte(padding)},padding)
return append(ciphertext,padTex...)
}
// 解密函数
func DESDecode(cripter, key []byte) ([]byte,error) {
// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}

// 设置解密模式,加密模式和解密模式要一样
blockMode := cipher.NewCBCDecrypter(block,key)

// 设置切片长度,用来存放明文字节
originData := make([]byte,len(cripter))

// 使用解密模式解密,将解密后的明文字节放入originData 切片中
blockMode.CryptBlocks(originData,cripter)

// 去除加密的padding部分
strByt := UnPKCS5Padding(origenData)

return strByt,nil
}
// 解密所需要的Unpadding
func UnPKCS5Padding(origin []byte) []byte{
// 获取最后一位转为整型,然后根据这个整型截取掉整型数量的长度
// 若此数为5,则减掉转换明文后的最后5位,即为我们输入的明文
var last = int(origin[len(origin)-1])
return origin[:len(origin)-last]
}
注意:在设置加密模式为CBC的时候,我们需要设置一个初始化向量,这个量的意思 在对称加密算法中,如果只有一个密钥来加密数据的话,明文中的相同文字就会也会被加密成相同的密文,这样密文和明文就有完全相同的结构,容易破解,如果给一个初始化向量,第一个明文使用初始化向量混合并加密,第二个明文用第一个明文的加密后的密文与第二个明文混合加密,这样加密出来的密文的结构则完全与明文不同,更加安全可靠。CBC模式图如下

CBC
3DES
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
对比DES,发现只是换了NewTripleDESCipher。不过,需要注意的是,密钥长度必须24byte,否则直接返回错误。关于这一点,PHP中却不是这样的,只要是8byte以上就行;而Java中,要求必须是24byte以上,内部会取前24byte(相当于就是24byte)。另外,初始化向量长度是8byte(目前各个语言都是如此,不是8byte会有问题)

热点内容
怎样登陆ftp 发布:2025-02-02 07:44:44 浏览:631
疯狂点击脚本 发布:2025-02-02 07:38:10 浏览:72
pss算法 发布:2025-02-02 07:30:55 浏览:747
发信息脚本 发布:2025-02-02 07:03:07 浏览:741
l2l3缓存 发布:2025-02-02 06:56:47 浏览:524
为什么安卓下不了虫虫助手 发布:2025-02-02 06:46:47 浏览:45
ftp服务器ui 发布:2025-02-02 06:24:15 浏览:103
wifi有多少种密码 发布:2025-02-02 06:22:06 浏览:587
app账号和密码忘了怎么办啊 发布:2025-02-02 06:21:58 浏览:107
map访问 发布:2025-02-02 06:09:07 浏览:825