当前位置:首页 » 密码管理 » hash在线加密

hash在线加密

发布时间: 2023-05-27 05:26:06

㈠ 2.哈希加密 & base64加密

一、哈希HASH

哈希(散列)函数  MD5 SHA1/256/512 HMAC

Hash的特点:

     1.算法是公开的

     2.对相同数据运算,得到的结果是一样的

     3.对不同数据运算,如MD5得到的结果是128位,32个字符的十六进制表示,没法逆运算

1.MD5加密

MD5加密的特点:

    不可逆运算

    对不同的数据加密的结果是定长的32位字符(不管文件多大都一样)

    对相同的数据加密,得到的结果是一样的(也就是复制)。

    抗修改性 : 信息“指纹”,对原数据进行任何改动,哪怕只修改一个字节,所得到的 MD5 值都有很大区别.

    弱抗碰撞 : 已知原数据和其 MD5 值,想找到一个具有相同 MD5 值的数据(即伪造数据)是非常困难的.

    强抗碰撞: 想找到两个不同数据,使他们具有相同的 MD5 值,是非常困难的

MD5 应用:

一致性验证:MD5将整个文件当做一个大文本信息,通过不可逆的字符串变换算法,产生一个唯一的MD5信息摘要,就像每个人都有自己独一无二的指纹,MD5对任何文件产生一个独一无二的数字指纹。

那么问题来了,你觉得这个MD5加密安全吗?其实是不安全的,不信的话可以到这个网站试试:md5破解网站。可以说嗖地一下就破解了你的MD5加密!

2.SHA加密

    安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。当让除了SHA1还有SHA256以及SHA512等。

二、base64加密

1.Base64说明

    描述:Base64可以成为密码学的基石,非常重要。

    特点:可以将任意的二进制数据进行Base64编码

    结果:所有的数据都能被编码为并只用65个字符就能表示的文本文件。

    65字符:A~Z a~z 0~9 + / =

    对文件进行base64编码后文件数据的变化:编码后的数据~=编码前数据的4/3,会大1/3左右。

2.命令行进行Base64编码和解码

    编码:base64 123.png -o 123.txt

    解码:base64 123.txt -o test.png -D

2.Base64编码原理

    1)将所有字符转化为ASCII码;

    2)将ASCII码转化为8位二进制;

    3)将二进制3个归成一组(不足3个在后边补0)共24位,再拆分成4组,每组6位;

    4)统一在6位二进制前补两个0凑足8位;

    5)将补0后的二进制转为十进制;

    6)从Base64编码表获取十进制对应的Base64编码;

处理过程说明:

    a.转换的时候,将三个byte的数据,先后放入一个24bit的缓冲区中,先来的byte占高位。

    b.数据不足3byte的话,于缓冲区中剩下的bit用0补足。然后,每次取出6个bit,按照其值选择查表选择对应的字符作为编码后的输出。

    c.不断进行,直到全部输入数据转换完成。

㈡ 通信安全:哈希、加密、证书、签名、密钥协商、ECDH、TLS、DTLS

哈希也叫散列,是把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是散列值,也叫摘要(Digest)。

这种转换是一种 压缩映射。 也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值,但如果输出的位数足够,不同输入散列成相同输出的概率非常非常小。

简单的说, 散列就是一种将任意长度的消息压缩到某一固定长度的消息摘要的过程

散列是不可逆的 ,也就是无法通过输出还原输入,此特性常被用于密码保存。

SHA-512、MD5等都是着名的散列函数,MD5生成的散列码是128位,甚至MD5就是哈希的同名词,你可以通过网站:https://passwordsgenerator.net/sha512-hash-generator/ 在线计算哈希。

散列有什么用?

加密就是把 明文变成密文的过程,解密就是反方向把密文变成明文

比如着名的 凯撒密码 ,就是把每个字对应到另一个,这样的话,只要有密码本,就能对照完成加解密。比如最简单的,对于英文26个字母,每个字母右移3个,abc变成def,这也是一种加密,当然这种加密很简单,很容易被破译。

而诸如AES(高级加密标准)、3DES(三重数据加密算法)则被公认为很难破解,不过山东大学女教授王小云很厉害,破解了MD5和SHA-1,迫使加密标准升级,最终当上了院士。

对称加密

对称加密就是加解密的密钥是一样的,优点是快,这也是传统的加密方式,像AES、3DES都是对称加密。

非对称加密

非对称加密用于加解密的密钥不一样,有2个密钥,公钥和私钥,公钥可以公开,私钥妥善保管。RSA、ECC(椭圆曲线加密算法)、DH(密钥交换算法)这些都是非对称加密。

非对称加密很慢,有多慢?相比对称加密慢1000倍,因为慢,所以它常用于密钥协商(Handshake),协商出会话密钥后,再用对称密钥加密通信数据。

1976年,Whitfield Diffie和Martin Hellman首次提出了非对称加密的概念,该算法被称为Diffie-Hellman密钥交换。然后在1978年,麻省理工学院的Ron Rivest,Adi Shamir和Leonard Adleman发表了RSA 算法。这些都可以被视为非对称加密的基础。

非对称加密也称为公钥基础结构,又称PKI。 非对称加密的提出是密码学上的一次革命,影响深远。

非对称加密算法用私钥加密,用公钥解密,或者用公钥加密,用私钥解密。

证书就是为了证明我是我,比如你要访问中国银行网站,但中行官网如何证明它是中行官网呢?答案就是数字证书。

CA是数字证书中心,服务器需要找CA做认证,让CA给自己颁布数字证书,数字证书内一般包含服务的一些信息、以及服务器的公钥,通过CA的私钥加密后,产生的数字证书,因为CA的权威性,且它的公钥天下皆知,所以,如果你能用CA的公钥解开证书,那便可证明该证书一定是CA颁发的,要不然它不会有CA的私钥,也便没法产生可用CA公钥解密的证书。

所以,由此可见,数字证书用到了非对称加密。

日常生活中也有签名,每个人的笔迹是不一样的,你刷卡消费后在账单签上大名,服务员校验过之后保存下来,你哪天赖账,便可以有签名为证,因为别人写的字跟你的笔迹终有差别。

那数字签名是什么呢?比如a发一封email,接收方怎么证明这封信是a写的?

本质上,数字签名也是利用了非对称加密。

前面讲了,非对称加密有公钥和私钥,如果发生方用私钥加密,然后接收方用发送方的公钥可以解密,那便可以证明是从某发送方发送的,因为别人拿不到你的私钥,也便无法用你的私钥加密,你不能抵赖。

数字签名通常先对内容算哈希,产生内容摘要,再用私钥加密,得到签名。

下面举一个例子来说明这几个问题:

张三有2把钥匙,一把公钥,公告天下,一把私钥,妥善保管,只有自己知道,很明显,非对称加密。

李四给张三写信,写完之后,用张三的公钥加密,通过邮局寄给张三,即使邮递员拆开信封看,他也看不懂,因为内容是密文,只有张三的密钥才能解密。

张三收到信后,用私钥解密,可以正常阅读。

现在张三要给李四回信,写完后,用hash函数生成摘要digest。

然后张三,再用私钥对摘要加密,生成数字签名signature。

然后把签名附在信的下面,一起发给李四。

过程是:信明文 -> hash -> digist -> 私钥加密 -> signature。

李四收到回信后,用张三的公钥对数字签名解密,得到摘要,由此证明,信确实是张三发出的,为什么?因为如果不是张三发的,那写信的人就没有张三私钥,用别的私钥加密得到的签名,是无法用张三的公钥解开的。

李四,再对信的内容做hash,得到摘要,与上一步得到的摘要对比,如果一致,则证明信的内容没有被修改过,信的内容是完整的。

复杂的情况出现了。

王五,用自己的公钥替换李四保存的张三的公钥,也就是王五欺骗了李四,李四误把王五的公钥当张三的公钥,这样一来,王五就能冒充张三给李四写信(王五用自己的私钥加密)。

问题是什么?问题是李四不能确信自己保存的公钥真的是张三的公钥。如果客户端电脑上存的工商银行官网的公钥,实际上是骗子公司的公钥,那就麻烦大了。

怎么破?让张三去认证中心CA(Certificate Authority),为公钥做认证,怎么做呢?CA中心用自己的私钥,对张三的公钥和其他相关信息一起加密,生成数字证书(Digital Certificate)。

张三拿到数字证书后,以后给李四回信,在签名的同时,附带上数字证书。

李四收到信之后,从CA的公钥解开数字证书,取出张三的公钥(一定是真的),然后就能放心的愉快的按之前的流程解开签名了。

数字证书加入后,核心区别就是张三的公钥不再保存在李四处,而是通过数字证书下发。

为什么数字证书里的张三的公钥一定是真的呢?因为CA是权威机构,假设全世界就一家(其实不止,但也不多),它的公钥天下尽知,就是固定的串,所以能用CA公钥解开的证书,一定是CA颁布的,因为CA用它的私钥加密产生的证书。很明显,非对称加密能用于证明我是我。

密钥交换算法

着名的DH密钥交换算法,这个算法很有意思,也很巧妙,简而言之,就是通信双方交换一点信息(不怕被偷看到),然后就在两端,分布产生出一个相同的密钥,神奇啊。

有一个很有意思的例子。

Alice和Bob要协商出一个公共的颜色,他们可以交换信息,但交换的信息,可以被偷看到,怎么办?既能协商出公共颜色,又不能让别人知道呢。

密钥交换算法的原理跟这个差不多,网上有大量的资料讲述这个问题,我觉得理解了上面的例子,再看ECDH便也不难了。

众所周知http是互联网协议,但是它不够安全,所以后面有改进版的https,其实就是多了一个TLS,这个是传输层加密,本质上,就是通过handshake,协商出一个会话密钥,后面的数据传递,都用这个密钥做对称加解密。

我们经常讲安全通道,其实也就是协商出一个会话密钥,他并不神秘。胡乱放几张图片吧。

为了减少这几个RTT,又想了各种办法,然后复用连接的话,就可以做到0RTT,1RTT了。

就说这些吧,最后抛几个名词,有兴趣自行网络学习:DTLS,HMAC,AEAD,重放攻击,放大攻击,是不是很高端?

㈢ 【以太坊易错概念】nonce, 公私钥和地址,BASE64/BASE58,

以太坊里的nonce有两种意思,一个是proof of work nonce,一个是account nonce。

在智能合约里,nonce的值代表的是该合约创建的合约数量。只有当一个合约创建另一个合约的时候才会增加nonce的值。但是当一个合约调用另一个合约神棚中的method时 nonce的值是不变的。
在以太坊中nonce的值可以这样来获取(其实也就是属于一个账户的交易数量):

但是这个方法只能获取交易once的值。仔茄目前是没有内置方法来访问contract中的nonce值的

通过椭圆曲线算法生成钥匙对(公钥和私钥),以太坊采用的是secp256k1曲线,
公钥采用uncompressed模式,生成的私钥为长度32字节的16进制字串,公钥为长度64的公钥字串。公钥04开头。
把公钥去掉04,剩下的进行keccak-256的哈希,得到长度64字节的16进制字串,丢掉前面24个,拿后40个,再加上"0x",即为以太坊地址。

整个过程可以归纳为:

2)有些网关或系统只能使用ASCII字符。Base64就是用来将非ASCII字符的数据转换成ASCII字符的一种方法,而且base64特别适合在http,mime协议下快速传输数据。Base64使用【字母azAZ数字09和+/】这64个字符编码。原理是将3个字节转换成4个字节(3 X 8) = 24 = (4 X 6)
当剩下的字符数量不足3个字节时,则应使用0进行填充,相应的,输出字符则使用'='占位,因此编码后输出的文本末尾可能会出现1至2个'='。

1)Base58是用于Bitcoin中使用的一种独特的编码方式,主要用于产生Bitcoin的钱包地址。相比Base64,Base58不使用数字"0",字母大写"O",字母大写"I",和字母小写"l",以及"+"和"/"符号。

Base58Check是一种常用在比特币中的Base58编码格式,增加了错误校验码来检查数据在转录中出现的错误。 校验码长4个字节,添加到需要编码的数据之后。校验码是从需要编码的数据的哈希值中得到的,所以可以用来检测并避免转录和输入中产生的错误。使用 Base58check编码格式时,编码软件会计算原始数据的校验码并和结果数据中自带的校验码进行对比。二者不匹配则表明有错误产生,那么这个 Base58Check格式的数据就是无效的。例如,一个错误比特币地址就不会被钱游戚则包认为是有效的地址,否则这种错误会造成资金的丢失。

为了使用Base58Check编码格式对数据(数字)进行编码,首先我们要对数据添加一个称作“版本字节”的前缀,这个前缀用来明确需要编码的数 据的类型。例如,比特币地址的前缀是0(十六进制是0x00),而对私钥编码时前缀是128(十六进制是0x80)。 表4-1会列出一些常见版本的前缀。

接下来,我们计算“双哈希”校验码,意味着要对之前的结果(前缀和数据)运行两次SHA256哈希算法:

checksum = SHA256(SHA256(prefix+data))
在产生的长32个字节的哈希值(两次哈希运算)中,我们只取前4个字节。这4个字节就作为校验码。校验码会添加到数据之后。

结果由三部分组成:前缀、数据和校验码。这个结果采用之前描述的Base58字母表编码。下图描述了Base58Check编码的过程。

相同:

1) 哈希算法、Merkle树、公钥密码算法
https://blog.csdn.net/s_lisheng/article/details/77937202?from=singlemessage

2)全新的 SHA-3 加密标准 —— Keccak
https://blog.csdn.net/renq_654321/article/details/79797428

3)在线加密算法
http://tools.jb51.net/password/hash_md5_sha

4)比特币地址生成算法详解
https://www.cnblogs.com/zhaoweiwei/p/address.html

5)Base58Check编码实现示例
https://blog.csdn.net/QQ604666459/article/details/82419527

6) 比特币交易中的签名与验证
https://www.jianshu.com/p/a21b7d72532f

㈣ 怎么用哈希函数给数据库中的密码加密

可以使用 System.Security.Cryptography 名称空间中包含的加密资源方便地生成和比较哈希值。 因为所有哈希函数的输入类型都是 Byte[],所以必须先将源数据转换为字节数组后再计算哈希值。 若要为一个字符串值创建哈希值,请按照下列步骤操作: 打开 Visual Studio .NET。 在 Microsoft C# 中新建控制台应用程序。Visual C# .NET 为您创建一个公用类以及一个空的 Main() 方法。 对 System、System.Security.Cryptography 和 System.Text 名称空间使用 using 指令,这样,在后面的代码中就不需要限定这些名称空间中的声明了。这些语句必须放在所有其他声明之前。 using System; using System.Security.Cryptography; using System.Text; 声明一个字符串变量以存放源数据,并声明两个字节数组(未定义大小)分别存放源字节和得出的哈希值。 s

㈤ 哈希(hash) - 哈希算法的应用

通过之前的学习,我们已经了解了哈希函数在散列表中的应用,哈希函数就是哈希算法的一个应用。那么在这里给出哈希的定义: 将任意长度的二进制值串映射为固定长度的二进制值串,这个映射规则就是哈希算法,得到的二进制值串就是哈希值
要设计一个好的哈希算法并不容易,它应该满足以下几点要求:

哈希算法的应用非常广泛,在这里就介绍七点应用:

有很多着名的哈希加密算法:MD5、SHA、DES...它们都是通过哈希进行加密的算法。
对于加密的哈希算法来说,有两点十分重要:一是很难根据哈希值反推导出原始数据;二是散列冲突的概率要很小。
当然,哈希算法不可能排除散列冲突的可能,这用数学中的 鸽巢原理 就可以很好解释。以MD5算法来说,得到的哈希值为一个 128 位的二进制数,它的数据容量最多为 2 128 bit,如果超过这个数据量,必然会出现散列冲突。
在加密解密领域没有绝对安全的算法,衫基一般来说,只要解密的计算量极其庞大,我们就可以认为这种加密方法是较为安全的。

假设我们有100万个图片,如果我们在图片中寻找某一个图片是非常耗时的,这是我们就可以使用哈希算法的原理为图片设置唯一标识。比如,我们可以从图片的二进制码串开头取100个字节,从中间取100个字节,从结尾取100个字节,然后将它们合并,并使用哈希算法计算得到一个哈希值,将其作为图片的唯一标识。
使用这个唯一标识判断图片是否在图库中,这可以减少甚多工作量。

在传输消息的过程中,我们担心通信数据被人篡改,这时就可以使用哈希函数进行数据校验。比如BT协议中就使用哈希栓发进行数据校验。

在散列表那一篇中我们就讲过散列函数的应用,相比于其它应用,散列函数对于散列算法冲突的要求低很多(我们可以通过开放寻址法或链表法解决冲突),同时散列函数对于散列算法是否能逆向解密也并不关心。
散列函数比较在意函数的执行效率,至于其它要求,在之前的我们已经讲过,就不再赘述了。

接下来的三个应用主要是在分布式系统中的应用

复杂均衡的算法很多,如何实现一个会话粘滞的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。

最简单的办法是我们根据客户端的 IP 地址或会话 ID 创建一个映射关系。但是这样很浪费内存,客户端上线下线,服务器扩容等都会导致映射失效,维护成本很大。

借助哈希算法,我们可以很轻松的解决这些问题:对客户端的 IP 地址或会话 ID 计算哈希值,将取得的哈希值域服务器的列表的大小进行取模运算,最后得到的值就是被路由到的服务器的编号。

假设有一个非常大的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?

分析一下,这个问题有两个难点:一是搜索日志很大,没办法放到一台机器的内存中;二是如果用一台机器处理这么大的数据,处理时间会很长。

针对这两个难点,我们可以先对数据进行分片,然后使用多台机器处理,提高处理速度。具体思路:使用 n 台机器并行处理,从日志文件中读出每个搜索关键词,通过哈希局销函数计算哈希值,然后用 n 取模,最终得到的值就是被分配的机器编号。
这样,相同的关键词被分配到了相同的机器上,不同机器只要记录属于自己那部分的关键词的出现次数,最终合并不同机器上的结果即可。

针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片思路,可以突破单机内存桐塌游、CPU等资源的限制。

处理思路和上面出现的思路类似:对数据进行哈希运算,对机器数取模,最终将存储数据(可能是硬盘存储,或者是缓存分配)分配到不同的机器上。

你可以看一下上图,你会发现之前存储的数据在新的存储规则下全部失效,这种情况是灾难性的。面对这种情况,我们就需要使用一致性哈希算法。

哈希算法是应用非常广泛的算法,你可以回顾上面的七个应用感受一下。

其实在这里我想说的是一个思想: 用优势弥补不足
例如,在计算机中,数据的计算主要依赖 CPU ,数据的存储交换主要依赖内存。两者一起配合才能实现各种功能,而两者在性能上依然无法匹配,这种差距主要是: CPU运算性能对内存的要求远高于现在的内存能提供的性能。
也就是说,CPU运算很快,内存相对较慢,为了抹平这种差距,工程师们想了很多方法。在我看来,散列表的使用就是利用电脑的高计算性能(优势)去弥补内存速度(不足)的不足,你仔细思考散列表的执行过程,就会明白我的意思。

以上就是哈希的全部内容

㈥ 哈希加密算法

MD5即Message-Digest Algorithm 5(信息摘要算法5),是计算机广泛使用的散列算法之一。经MD2、MD3和MD4发展而来,诞生于20世纪90年代初。用于确保信息传输完整一致。虽然已被破解,但仍然具有较好的安全性,加之可以免费使用,所以仍广泛运用于数字签名、文件完整性验证以及口令加密等领域。

算法原理:

散列算法得到的结果位数是有限的,比如MD5算法计算出的结果字长为128位,意味着只要我们穷举2^128次,就肯定能得到一组碰撞,下面让我们来看看一个真实的碰撞案例。我们之所以说MD5过时,是因为它在某些时候已经很难表现出散列算法的某些优势——比如在应对文件的微小修改时,散列算法得到的指纹结果应当有显着的不同,而下面的程序说明了MD5并不能实现这一点。

而诸如此类的碰撞案例还有很多,上面只是原始文件相对较小的一个例子。事实上现在我们用智能手机只要数秒就能找到MD5的一个碰撞案例,因此,MD5在数年前就已经不被推荐作为应用中的散列算法方案,取代它的是SHA家族算法,也就是安全散列算法(Secure Hash Algorithm,缩写为SHA)。

SHA实际包括有一系列算法,分别是SHA-1、SHA-224、SHA-256、SHA-384以及SHA-512。而我们所说的SHA2实际是对后面4中的统称。各种SHA算法的数据比较如下表,其中的长度单位均为位:

MD5和SHA1,它们都有4个逻辑函数,而在SHA2的一系列算法中都采用了6个逻辑函数。
以SHA-1为例,算法包括有如下的处理过程:

和MD5处理输入方式相同

经过添加位数处理的明文,其长度正好为512位的整数倍,然后按512位的长度进行分组,可以得到一定数量的明文分组,我们用Y 0 ,Y 1 ,……Y N-1 表示这些明文分组。对于每一个明文分组,都要重复反复的处理,这些与MD5都是相同的。

而对于每个512位的明文分组,SHA1将其再分成16份更小的明文分组,称为子明文分组,每个子明文分组为32位,我们且使用M[t](t= 0, 1,……15)来表示这16个子明文分组。然后需要将这16个子明文分组扩充到80个子明文分组,我们将其记为W[t](t= 0, 1,……79),扩充的具体方法是:当0≤t≤15时,Wt = Mt;当16≤t≤79时,Wt = ( W t-3 ⊕ W t-8 ⊕ W t-14 ⊕ W t-16 ) <<< 1,从而得到80个子明文分组。

所谓初始化缓存就是为链接变量赋初值。前面我们实现MD5算法时,说过由于摘要是128位,以32位为计算单位,所以需要4个链接变量。同样SHA-1采用160位的信息摘要,也以32位为计算长度,就需要5个链接变量。我们记为A、B、C、D、E。其初始赋值分别为:A = 0x67452301、B = 0xEFCDAB89、C = 0x98BADCFE、D = 0x10325476、E = 0xC3D2E1F0。

如果我们对比前面说过的MD5算法就会发现,前4个链接变量的初始值是一样的,因为它们本来就是同源的。

经过前面的准备,接下来就是计算信息摘要了。SHA1有4轮运算,每一轮包括20个步骤,一共80步,最终产生160位的信息摘要,这160位的摘要存放在5个32位的链接变量中。

在SHA1的4论运算中,虽然进行的就具体操作函数不同,但逻辑过程却是一致的。首先,定义5个变量,假设为H0、H1、H2、H3、H4,对其分别进行如下操作:

(A)、将A左移5为与 函数的结果求和,再与对应的子明文分组、E以及计算常数求和后的结果赋予H0。

(B)、将A的值赋予H1。

(C)、将B左移30位,并赋予H2。

(D)、将C的值赋予H3。

(E)、将D的值赋予H4。

(F)、最后将H0、H1、H2、H3、H4的值分别赋予A、B、C、D

这一过程表示如下:

而在4轮80步的计算中使用到的函数和固定常数如下表所示:

经过4轮80步计算后得到的结果,再与各链接变量的初始值求和,就得到了我们最终的信息摘要。而对于有多个明文分组的,则将前面所得到的结果作为初始值进行下一明文分组的计算,最终计算全部的明文分组就得到了最终的结果。

㈦ 公钥加密算法/哈希算法

公钥加密算法 也叫非对称加密,它在加密和解密时使用的是不同的密钥,具有这样的特征:

最常见的公钥加密算法是RSA公钥加密算法,也是签名中普遍使用的算法。其数学原理如下:

理论上 {n, e} 和 {n, d} 可以互换,任何一个都可以是公钥陆激皮或者私钥,加密和早差解密的函数也可以互换。但实践中,一般固定设置 e = 65537(0x10001) ,相当于公开的一个约定,这样一来 {n, e} 就只能作为公钥使用。

哈希算法
也叫散列或者摘要算法,对一段任意长度的数据,通过一定的映射和计算,得到一个固定长度的值,这个值就被称为这段数据的哈希值铅销(hash)。给定一个哈希算法,它一定具有以下特征:

常见的哈希算法有: md5, sha1, sha256等,其中sha1长度为160bits,而sha256长度为256bits,二者相比,sha256的取值范围更大,因此碰撞和破解的概率更低,也就相对更安全。

㈧ 密码学HASH与对称加密

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

MD5信息摘要算法 (英语:MD5 Message-Digest Algorithm),一种被广泛使用的 密码散列函数 ,可以产生出一个128位(16 字节 )的散列值(hash value),用于确保信息传输完整一致。2004年,证实MD5算法无法防止碰撞(collision)(如网站: CMD5 ),因此不适用于安全性认证,如 SSL 公开密钥认证或是 数字签名 等用途。

MD5 是哈希算法的一种。

密码加密常见的有以下几种方式:

HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,并在 IPSec 和其他网络协议(如 SSL )中得以广泛应用,现在已经成为事实上的Internet安全标准。它可以与任何迭代散列函数捆绑使用。

如上图中,共有两个流程:

授权设备登录流程:
1、输入账号过后,就把账号作为参数向服务器发送请求
2、服务器根据账号生成对应的key,并传递给客户端
3、客户端拿到key,进行HMAC运算,并将运算结果的哈希值传给服务器

其他设备登录流程:
1、输入账号过后,在本地缓存中找服务器传过来的key,有就登录,没有就把账号作为参数向服务器发送请求
2、服务器要先看这个账号是否开启了设备锁,没有开启就不允许登录,开启了,就向授权设备发送请求,是否授权,如果授权,就将这个账号的key传给其他客户端
3、客户端拿到key,进行HMAC运算,并将运算结果的哈希值传给服务器

但是在这之中有一个潜在的安全隐患问题: 当别人拿到账号和传递的哈希值过后,也就能拿到登录权限,从而不安全。

为了防止上面的问题,注册流程不变,服务器还是保存的有加了key的HMAC哈希值。
1、只是登录的时候,客户端将哈希值与时间戳拼接过后,进行MD5加密,再传给服务器。
2、服务器将注册保存的账号对应的HMAC哈希值,分别与当前时间,和前一分钟拼接再MD5加密,再和客户端传过来的进行匹配,匹配成功则登录成功,否则不成功。
3、注意这里的时间戳是服务器给的时间戳。

常见的加密算法:

应用模式:

AES加密解密都是用到的CCCrypt函数,并且需要导入 CommonCrypto 框架。

㈨ 如何使用java进行sha1加密

简单的做法是
1、使用apache的codec jar包对string进行加密,先下载并引入jar包:http://commons.apache.org/proper/commons-codec/
2、生成:
String sign = DigestUtils.shaHex(str);

3.也可以使用工具在线进行sha加密,参考 hash值(md5, sha1, sha256, sha512,crc32) 在线计算,http://www.it399.com/m/FileHash。望采纳,谢谢。

㈩ hash在线解密

*nix系系统:
ES(Unix)
例子: IvS7aeT4NzQPM
说明:linux或者其他linux内核系统中
长度: 13 个字符
描述喊基枯:第1、2位为salt,例子中的'Iv'位salt,后面的为hash值
系统:MD5(Unix)
例子:$1$12345678$XM4P3PrKBgKNnTaqG9P0T/
说明:Linux或者其他linux内核系统中
长度:34个字符
描述:开始的$1$位为加密标志,后面8位12345678为加密使用的salt,后面的为hash
加密算法:2000次循环调用MD5加密
系统:SHA-512(Unix)
例子:$6$12345678$U6Yv5E1lWn6mEESzKen42o6rbEm
说明:Linux或者其他linux内核系统中
长度: 13 个字符
描述:开始的$6$位为加密标志,后面8位为salt,后面的为hash
加密算法:5000次的SHA-512加密
系统:SHA-256(Unix)
例子:$5$12345678$jBWLgeYZbSvREnuBr5s3gp13vqi
说明:Linux或者其他linux内核系统中
长度: 55 个字符
描述:开始的$5$位为加密标志,后面8位为salt,后面的为hash
加密算法:5000次的SHA-256加密
系郑洞统:MD5(APR)
例子:$apr1$12345678$auQSX8Mvzt.tdBi4y6Xgj.
说明:Linux或者其他linux内核系统中
长度:37个字符
描述:开始的$apr1$位为加密标志,后面8位为salt,后面的为hash
加密算法:2000次循环调用MD5加密
windows系统:
windows
例子:Admin:
长度:98个字符
加密算法:MD4(MD4(Unicode($pass)).Unicode(strtolower($username)))
mysql
系统:mysql
例子:606717496665bcba
说明:老版本的MySql中
长度:8字节(16个字符)
说明:包括两个字节,且每个字的值不超过0x7fffffff
系统:MySQL5
例子:*
说明:较新版本的MySQL
长度:20字节(40位)
加密算法:SHA-1(SHA-1($pass))
其他系统:
系统:MD5(WordPress)
例子:$P$
说明:WordPress使用的md5
长度:34个字符
描述:$P$表示加密类型,然后跟着一位字符,经常是字符‘B’,后面是8位salt,后面是就是hash
加密算法:8192次md5循环加密

系统:MD5(phpBB3)
说明:phpBB 3.x.x.使用
例子:$H$9123456785DAERgALpsri.D9z3ht120
长度:34个字符
描述:开始的$H$为加密标志,后面跟着一个字符,一般的都是字符‘9’,然后是8位salt,然后是hash 值
加密算法:2048次循环调用MD5加密
系统:RAdmin v2.x
说明:Remote Administrator v2.x版本中
例子:
长度:16字节(32个字符)
加密算法:字符用0填充到100字节后,将填充过后的字符经过md5加密得到(32位值)
md5加密
标准MD5
例子:
使用范围:phpBB v2.x, Joomla 的 1.0.13版本前,及其他cmd
长度:16个字符
其他的加salt及变形类似:
md5($salt.$pass)
例子::12
md5(md5($pass))
例子:
md5(md5($pass).$salt)
例子::wQ6
md5(md5($salt).md5($pass))
例子: :wH6_S
md5(md5($salt).$pass)
例子锋誉: :1234

热点内容
红帆oa服务器地址查询 发布:2025-02-07 14:31:41 浏览:657
文本框脚本图片 发布:2025-02-07 14:23:28 浏览:231
少儿编程c语言 发布:2025-02-07 14:22:50 浏览:218
一阶低通滤波器c语言 发布:2025-02-07 14:22:37 浏览:852
电脑的东西为什么粘贴不到服务器 发布:2025-02-07 14:21:04 浏览:196
手机脱模解压视频 发布:2025-02-07 14:20:18 浏览:473
密码多少密码多少密码多少密码 发布:2025-02-07 14:07:30 浏览:856
我的世界启动器电脑服务器 发布:2025-02-07 14:07:27 浏览:484
爱加密深圳科技有限 发布:2025-02-07 14:07:26 浏览:86
c语言密码星号 发布:2025-02-07 14:07:24 浏览:801