对称加密算法
算法公开、计算量小、加密速度快、加密效率高。
对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户有n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。
对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密。
(1)对称加密算法扩展阅读:
对称加密算法缺点:
交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的唯一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。
对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。而与公开密钥加密算法比起来,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使用范围有所缩小。
⑵ 常用的对称加密算法包括
对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。
⑶ 对称加密算法与非对称加密算法的特点及用途
对称加密算法
对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。
对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有des、idea和aes。
不对称加密算法
不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有rsa算法和美国国家标准局提出的dsa。以不对称加密算法为基础的加密技术应用非常广泛。
⑷ 非对称加密算法是什么
非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得 十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
⑸ 对称加密算法的基本原理是什么
对称加密算法是应用较早的加密算法,技术成熟。
在对称加密算法中,其原理就是:数据发信方将明文(原始数据)和加密密钥(mi yao)一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。
在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。
⑹ 对称加密算法的加密算法主要有哪些
1、3DES算法
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:
3DES加密过程为:C=Ek3(Dk2(Ek1(M)))
3DES解密过程为:M=Dk1(EK2(Dk3(C)))
2、Blowfish算法
BlowFish算法用来加密64Bit长度的字符串。
BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。
BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。
分别说明如下:
密钥预处理:
BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:
1)用sbox填充key_sbox
2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。
比如说:选的key是"abcdefghijklmn"。则异或过程为:
key_pbox[0]=pbox[0]abcdefgh;
key_pbox[1]=pbox[1]ijklmnab;
…………
…………
如此循环,直到key_pbox填充完毕。
3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;
4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];
5)i+2,继续第4步,直到key_pbox全部被替换;
6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。
信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。
3、RC5算法
RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。
(6)对称加密算法扩展阅读:
普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。
对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。
这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。
⑺ 对称加密算法有哪些各自特点是什么
有wpa,wpa2两种认证方式,一般wpa2较为安全一些。
还有两种加密算法,TKIP和AES(也称CCMP),TKIP是早期的加密算法,不如AES的安全性好,而且TKIP不支持802.11n,也就是说,你在使用TKIP加密时,速度最大54M。
综上,建议使用wpa2-AES加密,或者wpa/wpa2-AES加密。
望采纳,谢谢!
⑻ 对称加密算法的缺点有哪些
1、对称加密算法
优点
加解密的高速度和使用长密钥时的难破解性。
缺点
对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去。如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档,如果整个企业共用一个加密密钥,那整个企业文档的保密性便无从谈起。
2、非对称加密算法
优点
非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。
缺点
算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。
3、传统密码体制
优点
由于DES加密速度快,适合加密较长的报文。
缺点
通用密钥密码体制的加密密钥和解密密钥是通用的,即发送方和接收方使用同样密钥的密码体制。
4、公钥密码体制
优点
RSA算法的加密密钥和加密算法分开,使得密钥分配更为方便。
RSA算法解决了大量网络用户密钥管理的难题。
缺点
RSA的密钥很长,加密速度慢。
⑼ 什么是3DES对称加密算法
DES加密经过下面的步骤
1、提供明文和密钥,将明文按照64bit分块(对应8个字节),不足8个字节的可以进行填充(填充方式多种),密钥必须为8个字节共64bit
填充方式:
当明文长度不为分组长度的整数倍时,需要在最后一个分组中填充一些数据使其凑满一个分组长度。
* NoPadding
API或算法本身不对数据进行处理,加密数据由加密双方约定填补算法。例如若对字符串数据进行加解密,可以补充\0或者空格,然后trim
* PKCS5Padding
加密前:数据字节长度对8取余,余数为m,若m>0,则补足8-m个字节,字节数值为8-m,即差几个字节就补几个字节,字节数值即为补充的字节数,若为0则补充8个字节的8
解密后:取最后一个字节,值为m,则从数据尾部删除m个字节,剩余数据即为加密前的原文。
例如:加密字符串为为AAA,则补位为AAA55555;加密字符串为BBBBBB,则补位为BBBBBB22;加密字符串为CCCCCCCC,则补位为CCCCCCCC88888888。
* PKCS7Padding
PKCS7Padding 的填充方式和PKCS5Padding 填充方式一样。只是加密块的字节数不同。PKCS5Padding明确定义了加密块是8字节,PKCS7Padding加密快可以是1-255之间。
2、选择加密模式
**ECB模式** 全称Electronic Codebook模式,译为电子密码本模式
**CBC模式** 全称Cipher Block Chaining模式,译为密文分组链接模式
**CFB模式** 全称Cipher FeedBack模式,译为密文反馈模式
**OFB模式** 全称Output Feedback模式,译为输出反馈模式。
**CTR模式** 全称Counter模式,译为计数器模式。
3、开始加密明文(内部原理--加密步骤,加密算法实现不做讲解)
image
1、将分块的64bit一组组加密,示列其中一组:将此组进行初始置换(IP置换),目的是将输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位。
2、开始Feistel结构的16次转换,第一次转换为:右侧数据R0和子密钥经过轮函数f生成用于加密左侧数据的比特序列,与左侧数据L0异或运算,
运算结果输出为加密后的左侧L0,右侧数据则直接输出为右侧R0。由于一次Feistel轮并不会加密右侧,因此需要将上一轮输出后的左右两侧对调后才正式完成一次Feistel加密,
3、DES算法共计进行16次Feistel轮,最后一轮输出后左右两侧无需对调,每次加密的子密钥不相同,子密钥是通过秘钥计算得到的。
4、末置换是初始置换的逆过程,DES最后一轮后,左、右两半部分并未进行交换,而是两部分合并形成一个分组做为末置换的输入
DES解密经过下面的步骤
1、拿到密文和加密的密钥
2、解密:DES加密和解密的过程一致,均使用Feistel网络实现,区别仅在于解密时,密文作为输入,并逆序使用子密钥。
3、讲解密后的明文去填充 (padding)得到的即为明文
Golang实现DES加密解密
package main
import (
"fmt"
"crypto/des"
"bytes"
"crypto/cipher"
)
func main() {
var miwen,_= DESEncode([]byte("hello world"),[]byte("12345678"))
fmt.Println(miwen) // [11 42 146 232 31 180 156 225 164 50 102 170 202 234 123 129],密文:最后5位是补码
var txt,_ = DESDecode(miwen,[]byte("12345678"))
fmt.Println(txt) // [104 101 108 108 111 32 119 111 114 108 100]明码
fmt.Printf("%s",txt) // hello world
}
// 加密函数
func DESEncode(orignData, key []byte)([]byte,error){
// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}
// 明文分组,不足的部分加padding
txt := PKCS5Padding(orignData,block.BlockSize())
// 设定加密模式,为了方便,初始向量直接使用key充当了(实际项目中,最好别这么做)
blockMode := cipher.NewCBCEncrypter(block,key)
// 创建密文长度的切片,用来存放密文字节
crypted :=make([]byte,len(txt))
// 开始加密,将txt作为源,crypted作为目的切片输入
blockMode.CryptBlocks(crypted,txt)
// 将加密后的切片返回
return crypted,nil
}
// 加密所需padding
func PKCS5Padding(ciphertext []byte,size int)[]byte{
padding := size - len(ciphertext)%size
padTex := bytes.Repeat([]byte{byte(padding)},padding)
return append(ciphertext,padTex...)
}
// 解密函数
func DESDecode(cripter, key []byte) ([]byte,error) {
// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}
// 设置解密模式,加密模式和解密模式要一样
blockMode := cipher.NewCBCDecrypter(block,key)
// 设置切片长度,用来存放明文字节
originData := make([]byte,len(cripter))
// 使用解密模式解密,将解密后的明文字节放入originData 切片中
blockMode.CryptBlocks(originData,cripter)
// 去除加密的padding部分
strByt := UnPKCS5Padding(origenData)
return strByt,nil
}
// 解密所需要的Unpadding
func UnPKCS5Padding(origin []byte) []byte{
// 获取最后一位转为整型,然后根据这个整型截取掉整型数量的长度
// 若此数为5,则减掉转换明文后的最后5位,即为我们输入的明文
var last = int(origin[len(origin)-1])
return origin[:len(origin)-last]
}
注意:在设置加密模式为CBC的时候,我们需要设置一个初始化向量,这个量的意思 在对称加密算法中,如果只有一个密钥来加密数据的话,明文中的相同文字就会也会被加密成相同的密文,这样密文和明文就有完全相同的结构,容易破解,如果给一个初始化向量,第一个明文使用初始化向量混合并加密,第二个明文用第一个明文的加密后的密文与第二个明文混合加密,这样加密出来的密文的结构则完全与明文不同,更加安全可靠。CBC模式图如下
CBC
3DES
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
对比DES,发现只是换了NewTripleDESCipher。不过,需要注意的是,密钥长度必须24byte,否则直接返回错误。关于这一点,PHP中却不是这样的,只要是8byte以上就行;而Java中,要求必须是24byte以上,内部会取前24byte(相当于就是24byte)。另外,初始化向量长度是8byte(目前各个语言都是如此,不是8byte会有问题)
⑽ 对称加密算法的应用模式
加密模式(英文名称及简写)
中文名称
Electronic
Code
Book(ECB)
电子密码本模式
Cipher
Block
Chaining(CBC)
密码分组链接模式
Cipher
Feedback
Mode(CFB)
加密反馈模式
Output
Feedback
Mode(OFB)
输出反馈模式
ECB:最基本的加密模式,也就是通常理解的加密,相同的明文将永远加密成相同的密文,无初始向量,容易受到密码本重放攻击,一般情况下很少用。
CBC:明文被加密前要与前面的密文进行异或运算后再加密,因此只要选择不同的初始向量,相同的密文加密后会形成不同的密文,这是目前应用最广泛的模式。CBC加密后的密文是上下文相关的,但明文的错误不会传递到后续分组,但如果一个分组丢失,后面的分组将全部作废(同步错误)。
CFB:类似于自同步序列密码,分组加密后,按8位分组将密文和明文进行移位异或后得到输出同时反馈回移位寄存器,优点最小可以按字节进行加解密,也可以是n位的,CFB也是上下文相关的,CFB模式下,明文的一个错误会影响后面的密文(错误扩散)。
OFB:将分组密码作为同步序列密码运行,和CFB相似,不过OFB用的是前一个n位密文输出分组反馈回移位寄存器,OFB没有错误扩散问题。