当前位置:首页 » 密码管理 » 网络随机加密

网络随机加密

发布时间: 2022-08-22 22:42:19

1. 无线路由器3种加密方式有什么不同

第一种是:WPA-PSK/WPA2-PSK


这种加密方式说白了就是WPA/WPA2的精简版,比较适合普通用户使用,安全性很高,配置也比较简单。


认证类型:可以选择自动、WPA-PSK、WPA2-PSK,选择自动的好处在于设备之间会协商使用哪种。


加密算法:可以选择TKIP、AES或者自动,因为11n模式不支持TKIP算法,所以推荐使用自动,设备之间会协商选择到底使用哪种算法。


PSK密码:也就是我们常说的无线密码了,最少8个字符。


组密钥更新周期:这个密钥跟上边的PSK密码不同,它是用于加密PSK密码用的,经常会变,如果这里设置为0则表示不更新组密钥。

第二种:WPA/WPA2


这种加密方式虽然安全,但配置繁琐,还需要有认证服务器(RADIUS服务器)的支持,所以一般人都不怎么用。


认证类型:可以在WPA和WPA2或者自动之间选择,自动的意思即为设备之间协商决定。


加密算法:和WPA-PSK中的加密算法介绍同,这里不再赘述。


Radius服务器IP:顾名思义,填写认证服务器的IP地址。


Radius端口:填写认证服务器的认证端口(默认是1812,一般情况下无需更改)


Radius密码:填写访问认证服务器的密码。


组密钥更新周期:介绍同WPA-PSK中的相同配置

第三种:WEP(Wired Equivalent Privacy)


这种加密方式现在已经不怎么用了,主要是安全性比较差,在破解工具面前可以说是不堪一击,而且更要命的是802.11n模式不支持这种加密方式


认证类型:可以在自动、开放系统、共享密钥中选择,自动的意思就是设备之间协商;

开放系统指无线主机即使没有密码也能连接到无线路由器,但没有密码不能传输数据;

共享密钥则需要无线主机必须提供密码才能连接到无线路由器。


WEP密钥格式:可以选择十六进制或者ASCII码,采用十六进制所能使用的字符有0-9和a-f;

ASCII则可以使用任意字符。


密码长度:64位密码需要输入十六进制字符10个或者ASCII字符5个;

128位十六进制字符26个或者ASCII字符13个;

152位需要十六进制字符32个或者ASCII字符16个。

2. 我用的是电信无线wifi,求加密方法和怎么查看网络是否被盗用

给无线网络加密 其实很简单

给无线网络加密是无线路由的最基础设置,无论你用的是何种品牌的无线路由器,你只需在IE地址栏中输入无线路由的默认IP地址(一般是标注在无线路由底部的铭牌上),例如:192.168.1.1,然后登录无线路由的Web配置界面,在“无线安全”菜单中就能找到无线加密的设置了。

在Web配置界面中进行设置

除了通过Web配置界面设置无线加密外,很多新款无线路由还可以通过随机附带的安装光盘进行无线加密设置,对于初级用户来说,这样的向导光盘非常实用,操作起来简单高效。

智能安装向导

通过上面的介绍,相信你已经了解如何给无线网络加密了。但面对WEP、WPA、WPA2三种加密方式,我们又该如何选择呢?它们之间的区别又是什么呢?是不是随便选一个就行呢?请接着往下看。

WEP:最先被攻破的无线加密技术

WEP(Wired Equivalent Privacy,有线等效保密)。单从名字上看,WEP似乎是一个针对有线网络的安全加密协议,其实并非如此。WEP标准在无线网络出现的早期就已创建,它是无线局域网WLAN的必要的安全防护层。目前常见的是64位WEP加密和128位WEP加密。

WEP安全技术源自于名为RC4的RSA数据加密技术,在无线网络中传输的数据是使用一个随机产生的密钥来加密的。但WEP用来产生这些密钥的算法很快就被发现具有可预测性,对于入侵者来说,他们可以很容易的截取和破解这些密钥,让用户的无线安全防护形同虚设。

IEEE(美国电气和电子工程师协会)802.11的WEP(有线等效保密)模式是在上世纪九十年代后期设计的,当时的无线安全防护效果非常出色。然而,仅仅两年以后,在2001年8月,Fluhrer et al.就发表了针对WEP的密码分析,利用RC4加解密和IV的使用方式的特性,在无线网络上偷听几个小时之后,就可以把RC4的钥匙破解出来。这个攻击方式迅速被传播,而且自动化破解工具也相继推出,WEP加密变得岌岌可危。

也许有些用户在实际应用中会发现,虽然无线路由支持WEP、WPA、WPA2三种加密方式,但只有选择WEP加密方式才能实现无线连接,选择WPA/WPA2均无法连接。造成这种现象的主要是因为用户的无线网卡(或操作系统版本)较老,只能支持WEP加密方式。所以,尽管WEP无线加密的安全性存在问题,但为了满足早期无线用户的需求,目前市场中主流的AP/无线路由依然支持WEP加密方式。

如果你所使用的无线网卡较老,那么在选择无线安全连接方式时,WEP加密可能就是你的唯一选择,那么请尽量选择128位WEP加密,相比64位加密,安全性更可靠一些。虽然WEP加密的安全性不高,但依然可以阻挡一部分初级非法用户的入侵,至少也可以避免让你的无线网络成为“免费的公共WiFi热点”,因此笔者强烈建议无线用户们至少为你们的无线网络进行WEP加密。

3. 什么网络加密的算法

由于网络所带来的诸多不安全因素使得网络使用者不得不采取相应的网络安全对策。为了堵塞安全漏洞和提供安全的通信服务,必须运用一定的技术来对网络进行安全建设,这已为广大网络开发商和网络用户所共识。

现今主要的网络安全技术有以下几种:

一、加密路由器(Encrypting Router)技术

加密路由器把通过路由器的内容进行加密和压缩,然后让它们通过不安全的网络进行传输,并在目的端进行解压和解密。

二、安全内核(Secured Kernel)技术

人们开始在操作系统的层次上考虑安全性,尝试把系统内核中可能引起安全性问题的部分从内核中剔除出去,从而使系统更安全。如S olaris操作系统把静态的口令放在一个隐含文件中, 使系统的安全性增强。

三、网络地址转换器(Network Address Translater)

网络地址转换器也称为地址共享器(Address Sharer)或地址映射器,初衷是为了解决IP 地址不足,现多用于网络安全。内部主机向外部主机连接时,使用同一个IP地址;相反地,外部主机要向内部主机连接时,必须通过网关映射到内部主机上。它使外部网络看不到内部网络, 从而隐藏内部网络,达到保密作用。

数据加密(Data Encryption)技术

所谓加密(Encryption)是指将一个信息(或称明文--plaintext) 经过加密钥匙(Encrypt ionkey)及加密函数转换,变成无意义的密文( ciphertext),而接收方则将此密文经过解密函数、解密钥匙(Decryti on key)还原成明文。加密技术是网络安全技术的基石。

数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为专用密钥和公开密钥两种。

专用密钥,又称为对称密钥或单密钥,加密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。

DES是一种数据分组的加密算法,它将数据分成长度为6 4位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到6 4位的杂乱无章的数据组;第二步将其分成均等两段 ;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。

公开密钥,又称非对称密钥,加密时使用不同的密钥,即不同的算法,有一把公用的加密密钥,有多把解密密钥,如RSA算法。

在计算机网络中,加密可分为"通信加密"(即传输过程中的数据加密)和"文件加密"(即存储数据加密)。通信加密又有节点加密、链路加密和端--端加密3种。

①节点加密,从时间坐标来讲,它在信息被传入实际通信连接点 (Physical communication link)之前进行;从OSI 7层参考模型的坐标 (逻辑空间)来讲,它在第一层、第二层之间进行; 从实施对象来讲,是对相邻两节点之间传输的数据进行加密,不过它仅对报文加密,而不对报头加密,以便于传输路由的选择。

②链路加密(Link Encryption),它在数据链路层进行,是对相邻节点之间的链路上所传输的数据进行加密,不仅对数据加密还对报头加密。

③端--端加密(End-to-End Encryption),它在第六层或第七层进行 ,是为用户之间传送数据而提供的连续的保护。在始发节点上实施加密,在中介节点以密文形式传输,最后到达目的节点时才进行解密,这对防止拷贝网络软件和软件泄漏也很有效。

在OSI参考模型中,除会话层不能实施加密外,其他各层都可以实施一定的加密措施。但通常是在最高层上加密,即应用层上的每个应用都被密码编码进行修改,因此能对每个应用起到保密的作用,从而保护在应用层上的投资。假如在下面某一层上实施加密,如TCP层上,就只能对这层起到保护作用。

值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。

(1)数字签名

公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者, 即任何得到公开密钥的人都可以生成和发送报文。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题。

数字签名一般采用不对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。当然,签名也可以采用多种方式,例如,将签名附在明文之后。数字签名普遍用于银行、电子贸易等。

数字签名不同于手写签字:数字签名随文本的变化而变化,手写签字反映某个人个性特征, 是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。

(2)Kerberos系统

Kerberos系统是美国麻省理工学院为Athena工程而设计的,为分布式计算环境提供一种对用户双方进行验证的认证方法。

它的安全机制在于首先对发出请求的用户进行身份验证,确认其是否是合法的用户;如是合法的用户,再审核该用户是否有权对他所请求的服务或主机进行访问。从加密算法上来讲,其验证是建立在对称加密的基础上的。

Kerberos系统在分布式计算环境中得到了广泛的应用(如在Notes 中),这是因为它具有如下的特点:

①安全性高,Kerberos系统对用户的口令进行加密后作为用户的私钥,从而避免了用户的口令在网络上显示传输,使得窃听者难以在网络上取得相应的口令信息;

②透明性高,用户在使用过程中,仅在登录时要求输入口令,与平常的操作完全一样,Ker beros的存在对于合法用户来说是透明的;

③可扩展性好,Kerberos为每一个服务提供认证,确保应用的安全。

Kerberos系统和看电影的过程有些相似,不同的是只有事先在Ker beros系统中登录的客户才可以申请服务,并且Kerberos要求申请到入场券的客户就是到TGS(入场券分配服务器)去要求得到最终服务的客户。
Kerberos的认证协议过程如图二所示。

Kerberos有其优点,同时也有其缺点,主要如下:

①、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。

②、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。

③、AS和TGS是集中式管理,容易形成瓶颈,系统的性能和安全也严重依赖于AS和TGS的性能和安全。在AS和TGS前应该有访问控制,以增强AS和TGS的安全。

④、随用户数增加,密钥管理较复杂。Kerberos拥有每个用户的口令字的散列值,AS与TGS 负责户间通信密钥的分配。当N个用户想同时通信时,仍需要N*(N-1)/2个密钥

( 3 )、PGP算法

PGP(Pretty Good Privacy)是作者hil Zimmermann提出的方案, 从80年代中期开始编写的。公开密钥和分组密钥在同一个系统中,公开密钥采用RSA加密算法,实施对密钥的管理;分组密钥采用了IDEA算法,实施对信息的加密。

PGP应用程序的第一个特点是它的速度快,效率高;另一个显着特点就是它的可移植性出色,它可以在多种操作平台上运行。PGP主要具有加密文件、发送和接收加密的E-mail、数字签名等。

(4)、PEM算法

保密增强邮件(Private Enhanced Mail,PEM),是美国RSA实验室基于RSA和DES算法而开发的产品,其目的是为了增强个人的隐私功能, 目前在Internet网上得到了广泛的应用,专为E-mail用户提供如下两类安全服务:

对所有报文都提供诸如:验证、完整性、防抵 赖等安全服务功能; 提供可选的安全服务功能,如保密性等。

PEM对报文的处理经过如下过程:

第一步,作规范化处理:为了使PEM与MTA(报文传输代理)兼容,按S MTP协议对报文进行规范化处理;

第二步,MIC(Message Integrity Code)计算;

第三步,把处理过的报文转化为适于SMTP系统传输的格式。

身份验证技术

身份识别(Identification)是指定用户向系统出示自己的身份证明过程。身份认证(Authertication)是系统查核用户的身份证明的过程。人们常把这两项工作统称为身份验证(或身份鉴别),是判明和确认通信双方真实身份的两个重要环节。

Web网上采用的安全技术

在Web网上实现网络安全一般有SHTTP/HTTP和SSL两种方式。

(一)、SHTTP/HTTP

SHTTP/HTTP可以采用多种方式对信息进行封装。封装的内容包括加密、签名和基于MAC 的认证。并且一个消息可以被反复封装加密。此外,SHTTP还定义了包头信息来进行密钥传输、认证传输和相似的管理功能。SHTTP可以支持多种加密协议,还为程序员提供了灵活的编程环境。

SHTTP并不依赖于特定的密钥证明系统,它目前支持RSA、带内和带外以及Kerberos密钥交换。

(二)、SSL(安全套层) 安全套接层是一种利用公开密钥技术的工业标准。SSL广泛应用于Intranet和Internet 网,其产品包括由Netscape、Microsoft、IBM 、Open Market等公司提供的支持SSL的客户机和服务器,以及诸如Apa che-SSL等产品。

SSL提供三种基本的安全服务,它们都使用公开密钥技术。

①信息私密,通过使用公开密钥和对称密钥技术以达到信息私密。SSL客户机和SSL服务器之间的所有业务使用在SSL握手过程中建立的密钥和算法进行加密。这样就防止了某些用户通过使用IP packet sniffer工具非法窃听。尽管packet sniffer仍能捕捉到通信的内容, 但却无法破译。 ②信息完整性,确保SSL业务全部达到目的。如果Internet成为可行的电子商业平台,应确保服务器和客户机之间的信息内容免受破坏。SSL利用机密共享和hash函数组提供信息完整性服务。③相互认证,是客户机和服务器相互识别的过程。它们的识别号用公开密钥编码,并在SSL握手时交换各自的识别号。为了验证证明持有者是其合法用户(而不是冒名用户),SSL要求证明持有者在握手时对交换数据进行数字式标识。证明持有者对包括证明的所有信息数据进行标识以说明自己是证明的合法拥有者。这样就防止了其他用户冒名使用证明。证明本身并不提供认证,只有证明和密钥一起才起作用。 ④SSL的安全性服务对终端用户来讲做到尽可能透明。一般情况下,用户只需单击桌面上的一个按钮或联接就可以与SSL的主机相连。与标准的HTTP连接申请不同,一台支持SSL的典型网络主机接受SSL连接的默认端口是443而不是80。

当客户机连接该端口时,首先初始化握手协议,以建立一个SSL对话时段。握手结束后,将对通信加密,并检查信息完整性,直到这个对话时段结束为止。每个SSL对话时段只发生一次握手。相比之下,HTTP 的每一次连接都要执行一次握手,导致通信效率降低。一次SSL握手将发生以下事件:

1.客户机和服务器交换X.509证明以便双方相互确认。这个过程中可以交换全部的证明链,也可以选择只交换一些底层的证明。证明的验证包括:检验有效日期和验证证明的签名权限。

2.客户机随机地产生一组密钥,它们用于信息加密和MAC计算。这些密钥要先通过服务器的公开密钥加密再送往服务器。总共有四个密钥分别用于服务器到客户机以及客户机到服务器的通信。

3.信息加密算法(用于加密)和hash函数(用于确保信息完整性)是综合在一起使用的。Netscape的SSL实现方案是:客户机提供自己支持的所有算法清单,服务器选择它认为最有效的密码。服务器管理者可以使用或禁止某些特定的密码。

代理服务

在 Internet 中广泛采用代理服务工作方式, 如域名系统(DNS), 同时也有许多人把代理服务看成是一种安全性能。

从技术上来讲代理服务(Proxy Service)是一种网关功能,但它的逻辑位置是在OSI 7层协议的应用层之上。

代理(Proxy)使用一个客户程序,与特定的中间结点链接,然后中间结点与期望的服务器进行实际链接。与应用网关型防火墙所不同的是,使用这类防火墙时外部网络与内部网络之间不存在直接连接,因此 ,即使防火墙产生了问题,外部网络也无法与被保护的网络连接。

防火墙技术

(1)防火墙的概念

在计算机领域,把一种能使一个网络及其资源不受网络"墙"外"火灾"影响的设备称为"防火墙"。用更专业一点的话来讲,防火墙(FireW all)就是一个或一组网络设备(计算机系统或路由器等),用来在两个或多个网络间加强访问控制,其目的是保护一个网络不受来自另一个网络的攻击。可以这样理解,相当于在网络周围挖了一条护城河,在唯一的桥上设立了安全哨所,进出的行人都要接受安全检查。

防火墙的组成可以这样表示:防火墙=过滤器+安全策略(+网关)。

(2)防火墙的实现方式

①在边界路由器上实现;
②在一台双端口主机(al-homed host)上实现;
③在公共子网(该子网的作用相当于一台双端口主机)上实现,在此子网上可建立含有停火区结构的防火墙。

(3)防火墙的网络结构

网络的拓扑结构和防火墙的合理配置与防火墙系统的性能密切相关,防火墙一般采用如下几种结构。
①最简单的防火墙结构
这种网络结构能够达到使受保护的网络只能看到"桥头堡主机"( 进出通信必经之主机), 同时,桥头堡主机不转发任何TCP/IP通信包, 网络中的所有服务都必须有桥头堡主机的相应代理服务程序来支持。但它把整个网络的安全性能全部托付于其中的单个安全单元,而单个网络安全单元又是攻击者首选的攻击对象,防火墙一旦破坏,桥头堡主机就变成了一台没有寻径功能的路由器,系统的安全性不可靠。

②单网端防火墙结构

其中屏蔽路由器的作用在于保护堡垒主机(应用网关或代理服务) 的安全而建立起一道屏障。在这种结构中可将堡垒主机看作是信息服务器,它是内部网络对外发布信息的数据中心,但这种网络拓扑结构仍把网络的安全性大部分托付给屏蔽路由器。系统的安全性仍不十分可靠。

③增强型单网段防火墙的结构

为增强网段防火墙安全性,在内部网与子网之间增设一台屏蔽路由器,这样整个子网与内外部网络的联系就各受控于一个工作在网络级的路由器,内部网络与外部网络仍不能直接联系,只能通过相应的路由器与堡垒主机通信。

④含"停火区"的防火墙结构

针对某些安全性特殊需要, 可建立如下的防火墙网络结构。 网络的整个安全特性分担到多个安全单元, 在外停火区的子网上可联接公共信息服务器,作为内外网络进行信息交换的场所。

网络反病毒技术

由于在网络环境下,计算机病毒具有不可估量的威胁性和破坏力, 因此计算机病毒的防范也是网络安全性建设中重要的一环。网络反病毒技术也得到了相应的发展。

网络反病毒技术包括预防病毒、检测病毒和消毒等3种技术。(1) 预防病毒技术,它通过自身常驻系统内存,优先获得系统的控制权,监视和判断系统中是否有病毒存在,进而阻止计算机病毒进入计算机系统和对系统进行破坏。这类技术是:加密可执行程序、引导区保护、系统监控与读写控制(如防病毒卡)等。(2)检测病毒技术,它是通过对计算机病毒的特征来进行判断的技术,如自身校验、关键字、文件长度的变化等。(3)消毒技术,它通过对计算机病毒的分析,开发出具有删除病毒程序并恢复原文件的软件。

网络反病毒技术的实施对象包括文件型病毒、引导型病毒和网络病毒。

网络反病毒技术的具体实现方法包括对网络服务器中的文件进行频繁地扫描和监测;在工作站上采用防病毒芯片和对网络目录及文件设置访问权限等。

随着网上应用不断发展,网络技术不断应用,网络不安全因素将会不断产生,但互为依存的,网络安全技术也会迅速的发展,新的安全技术将会层出不穷,最终Internet网上的安全问题将不会阻挡我们前进的步伐

4. 互联网信息安全传输加密模式原理分解

网络安全主要是通过信息加密来实现的。今天,我们就一起来了解一下,这些信息加密的方法是如何运行的。它背后的原理都有哪些。希望通过对本文的阅读。能够提高大家对互联网信息安全的信任度。



有了“原信息”和它对应的“md5签名字符串”,我们就可以做基本的信息验证:通过md5签名字符串的一致性,来保障我们收到的信息没有受到更改。


P.S.:由于签名signature在后续文章中会另有所指,为区分md5签名字符串,我们将md5签名字符串的叫法,更改为md5指纹字符串。意思同签名是一样的,就是A之所以是A的证据、特征,可以用签名来表示,也可以用指纹来表示。这里,我们开始将md5字符串对应的这个特征,称作md5指纹。


但一个容易发现的漏洞是,如果“原信息”和“md5指纹字符串”同时被修改了该怎么办?原信息被代提成了伪信息,而md5指纹字符串也被替换成了伪信息所生成的md5码,这时候,原有的验证过程都可以走通,根本无法发现信息被修改了或者替换了。


为了解决这个问题,在工业实践中便会将验证和加密进行组合使用。除了单纯的组合,还会引入一些基本的小技巧。


例如,因为md5的验证算法是公开的,所以很容易生成一份信息的md5指纹字符串,从而对原信息进行伪造。那么,可以不可以让人无法或者说难于伪造这份信息的md5指纹字符串呢?


一个小技巧是:并不提供原信息的md5验证码,而是提供“原信息+akey”的md5指纹字符串:


这个key,就是一串如“”这样的随机字符串,它由“发信人”和“收信人”分别单独保存。


这时候,我们的验证流程就变成了:


发件人将“原信息”和“key”一起打包,生成一个md5指纹字符串。再将原信息和md5指纹字符串发送出去。


收件人收到信息后,将“接受信息”和“key”一起打包,生成一个md5字符串,再与接收到的md5字符串比较,看它们是否一致。


在这样的情况下,即便是原信息和md5字符串同时被修改了,但因为伪造者并不知道这个md5字符串是在原有信息的基础上,增加了什么样的一个key字符串来生成的,他就几乎不可能提供一个“原信息+key”的md5字符串。因为他无法逆向推导出那个key长成什么样。而这个“几乎不可能”,是由md5加密算法所保证的。


另一种保障“原信息”和“md5指纹字符串”的方式,是直接考虑把md5验证码做加密。昆明电脑培训http://www.kmbdqn.cn/认为这种方式并不同上面的小技巧相冲突,事实上它完全可以和上面的技巧结合,构造出更安全的方式。但为了降低理解的困难程度,让我们先暂时抛开上面的小技巧,只是单纯地考虑“原信息”“md5指纹字符串”和“md5字符串加密”这三样东西。


5. VBS随机加密代码

呵呵,这个不难,给你提供一个思路,自己琢磨一下,呵呵
首先主体部分,读入1.vbs,
写个循环
密钥由
rnd()产生
调用
加密函数
生成
2.vbs
暂停(sleep)
5分钟
然后是你的加密函数,循环内部调用你的加密函数这个太多了,上网收一下成片的都是。
下面是部分代码,自己补全吧,呵呵
Dim
str
read
Randomize
For
i
=
1
To
10
a=Int(Rnd()*10000)
'四位加密密钥,你可以取更长
code
str,a
write
WScript.Sleep
5*60*1000
Next
sub
read()
'读取1.vbs到str
End
sub
Sub
write()
'把str写入2.vbs
End
Sub
Sub
code(str,a)
'加密算法,
End
Sub

6. 随机确定密文的加密方式,密码有办法被破解吗

只要有程序,无须破解密码,只要在判断程序的地方,把相等判断改为不等判断即可. 原始程序要么是: if 密码 等于 '原始密码' then 继续使用; 要么是: if 密码 不等于 '原始密码' then 出错退出; 只要找到这样的地方,把等于改为不等于,或者把不等

7. 网络加密

MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和C语言源代码在Internet RFCs 1321中有详细的描述http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IEFT提交。

Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--既没有重复。

为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位Damg?rd/Merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den Boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。

尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有SHA-1、RIPE-MD以及HAVAL等。

一年以后,即1991年,Rivest开发出技术上更为趋近成熟的MD5算法。它在MD4的基础上增加了"安全-带子"(Safety-Belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD4完全相同。Den Boer和Bosselaers曾发现MD5算法中的假冲突(Pseudo-Collisions),但除此之外就没有其他被发现的加密后结果了。

Van Oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(Brute-Force Hash Function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。

8. 网络现代加密技术分几种

1 数据加密原理

1.1数据加密

在计算机上实现的数据加密,其加密或解密变换是由密钥控制实现的。密钥(Keyword)是用户按照一种密码体制随机选取,它通常是一随机字符串,是控制明文和密文变换的唯一参数。
例:明文为字符串:
AS KINGFISHERS CATCH FIRE

(为简便起见,假定所处理的数据字符仅为大写字母和空格符)。
假定密钥为字符串: ELIOT

加密算法为:
(1)将明文划分成多个密钥字符串长度大小的块(空格符以″+″表示)
AS+KI NGFIS HERS+ CATCH +FIRE
(2)用00~26范围的整数取代明文的每个字符,空格符=00,A=01,...,Z=26:
0119001109 1407060919 0805181900 0301200308 0006091805
(3) 与步骤2一样对密钥的每个字符进行取代:
0512091520
(4) 对明文的每个块,将其每个字符用对应的整数编码与密钥中相应位置的字符的整数编码的和模27后的值取代:
(5) 将步骤4的结果中的整数编码再用其等价字符替换:
FDIZB SSOXL MQ+GT HMBRA ERRFY

理想的情况是采用的加密模式使得攻击者为了破解所付出的代价应远远超过其所获得的利益。实际上,该目的适用于所有的安全性措施。这种加密模式的可接受的最终目标是:即使是该模式的发明者也无法通过相匹配的明文和密文获得密钥,从而也无法破解密文。

1.2数字签名

密码技术除了提供信息的加密解密外,还提供对信息来源的鉴别、保证信息的完整和不可否认等功能,而这三种功能都是通过数字签名实现。

数字签名是涉及签名信息和签名人私匙的计算结果。首先,签名人的软件对发送信息进行散列函数运算后,生成信息摘要(message digest)--这段信息所特有的长度固定的信息表示,然后,软件使用签名人的私匙对摘要进行解密,将结果连同信息和签名人的数字证书一同传送给预定的接收者。而接收者的软件会对收到的信息生成信息摘要(使用同样的散列函数),并使用签名人的公匙对签名人生成的摘要进行解密。接收者的软件也可以加以配置,验证签名人证书的真伪,确保证书是由可信赖的CA颁发,而且没有被CA吊销。如两个摘要一样,就表明接收者成功核实了数字签名。

2 加密体制及比较

根据密钥类型不同将现代密码技术分为两类:一类是对称加密(秘密钥匙加密)系统,另一类是公开密钥加密(非对称加密)系统。

2.1对称密码加密系统

对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,保持钥匙的秘密。

对称密码系统的安全性依赖于以下两个因素。第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性。因为算法不需要保密,所以制造商可以开发出低成本的芯片以实现数据加密。这些芯片有着广泛的应用,适合于大规模生产。

对称加密系统最大的问题是密钥的分发和管理非常复杂、代价高昂。比如对于具有n个用户的网络,需要n(n-1)/2个密钥,在用户群不是很大的情况下,对称加密系统是有效的。但是对于大型网络,当用户群很大,分布很广时,密钥的分配和保存就成了大问题。对称加密算法另一个缺点是不能实现数字签名。

对称加密系统最着名的是美国数据加密标准DES、AES(高级加密标准)和欧洲数据加密标准IDEA。1977年美国国家标准局正式公布实施了美国的数据加密标准DES,公开它的加密算法,并批准用于非机密单位和商业上的保密通信。DES成为全世界使用最广泛的加密标准。

但是,经过20多年的使用,已经发现DES很多不足之处,对DES的破解方法也日趋有效。AES将会替代DES成为新一代加密标准。DES具有这样的特性,其解密算法与加密算法相同,除了密钥Key的施加顺序相反以外。

2.2 公钥密码加密系统

公开密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。由于加密钥匙是公开的,密钥的分配和管理就很简单,比如对于具有n个用户的网络,仅需要2n个密钥。公开密钥加密系统还能够很容易地实现数字签名。因此,最适合于电子商务应用需要。在实际应用中,公开密钥加密系统并没有完全取代对称密钥加密系统,这是因为公开密钥加密系统是基于尖端的数学难题,计算非常复杂,它的安全性更高,但它实现速度却远赶不上对称密钥加密系统。在实际应用中可利用二者的各自优点,采用对称加密系统加密文件,采用公开密钥加密系统加密″加密文件″的密钥(会话密钥),这就是混合加密系统,它较好地解决了运算速度问题和密钥分配管理问题。

根据所基于的数学难题来分类,有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭圆曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。

当前最着名、应用最广泛的公钥系统RSA是由Rivet、Shamir、Adelman提出的(简称为RSA系统),它加密算法使用了两个非常大的素数来产生公钥和私钥。现实中加密算法都基于RSA加密算法。pgp算法(以及大多数基于RSA算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

RSA方法的优点主要在于原理简单,易于使用。随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展(可以使用成千上万台机器同时进行大整数分解),作为RSA加解密安全保障的大整数要求越来越大。为了保证RSA使用的安全性,其密钥的位数一直在增加,比如,目前一般认为RSA需要1024位以上的字长才有安全保障。但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,对进行大量安全交易的电子商务更是如此,从而使得其应用范围越来越受到制约。

DSA(DataSignatureAlgorithm)是基于离散对数问题的数字签名标准,它仅提供数字签名,不提供数据加密功能。它也是一个″非确定性的″数字签名算法,对于一个报文M,它的签名依赖于随机数r ?熏 这样,相同的报文就可能会具有不同的签名。另外,在使用相同的模数时,DSA比RSA更慢(两者产生签名的速度相同,但验证签名时DSA比RSA慢10到40倍)。
2.3 椭圆曲线加密算法ECC技术优势

安全性更高、算法实现性能更好的公钥系统椭圆曲线加密算法ECC(EllipticCurveCryptography)基于离散对数的计算困难性。

热点内容
海康威视存储卡质量如何 发布:2024-09-19 08:55:35 浏览:939
python3默认安装路径 发布:2024-09-19 08:50:22 浏览:516
环卫视频拍摄脚本 发布:2024-09-19 08:35:44 浏览:418
sqlserveronlinux 发布:2024-09-19 08:16:54 浏览:256
编程常数 发布:2024-09-19 08:06:36 浏览:952
甘肃高性能边缘计算服务器云空间 发布:2024-09-19 08:06:26 浏览:162
win7家庭版ftp 发布:2024-09-19 07:59:06 浏览:717
数据库的优化都有哪些方法 发布:2024-09-19 07:44:43 浏览:269
知乎华为编译器有用吗 发布:2024-09-19 07:32:20 浏览:618
访问虚拟机磁盘 发布:2024-09-19 07:28:13 浏览:670