当前位置:首页 » 密码管理 » 其他加密技术

其他加密技术

发布时间: 2022-06-03 13:54:04

1. 什么是古典加密算法

古典加密算法分为替代算法和置换移位法。

1.替代算法
替代算法指的是明文的字母由其他字母或数字或符号所代替。最着名的替代算法是恺撒密码。凯撒密码的原理很简单,其实就是单字母替换。我们看一个简单的例子:

明文:abcdefghijklmnopq

密文:defghijklmnopqrst

若明文为student,对应的密文则为vwxghqw 。在这个一一对应的算法中,恺撒密码将字母表用了一种顺序替代的方法来进行加密,此时密钥为3,即每个字母顺序推后3个。由于英文字母为26个,因此恺撒密码仅有26个可能的密钥,非常不安全。

为了加强安全性,人们想出了更进一步的方法:替代时不是有规律的,而是随机生成一个对照表。

明文:abcdefghijklmnopqrstuvwxyz

密文:xnyahpogzqwbtsflrcvmuekjdI

此时,若明文为student,对应的密文则为 vmuahsm 。这种情况下,解密函数是上面这个替代对照表的一个逆置换。

不过,有更好的加密手段,就会有更好的解密手段。而且无论怎样的改变字母表中的字母顺序,密码都有可能被人破解。由于英文单词中各字母出现的频度是不一样的,通过对字母频度的统计就可以很容易的对替换密码进行破译。为了抗击字母频度分析,随后产生了以置换移位法为主要加密手段的加密方法。

2.置换移位法
使用置换移位法的最着名的一种密码称为维吉尼亚密码。它以置换移位为基础的周期替换密码。

前面介绍的替代算法中,针对所有的明文字母,密钥要么是一个唯一的数,要么则是完全无规律可寻的。在维吉尼亚密码中,加密密钥是一个可被任意指定的字符串。加密密钥字符依次逐个作用于明文信息字符。明文信息长度往往会大于密钥字符串长度,而明文的每一个字符都需要有一个对应的密钥字符,因此密钥就需要不断循环,直至明文每一个字符都对应一个密钥字符。对密钥字符,我们规定密钥字母a,b,c,d……y,z对应的数字n为:0,1,2,3……24,25。每个明文字符首先找到对应的密钥字符,然后根据英文字母表按照密钥字符对应的数字n向后顺序推后n个字母,即可得到明文字符对应的密文字符。

如果密钥字为deceptive , 明文为 wearediscoveredsaveyourself,则加密的过程为:

明文: wearediscoveredsaveyourself

密钥: deceptivedeceptivedeceptive

密文: zicvtwqngrzgvtwavzhcqyglmgj

对明文中的第一个字符w,对应的密钥字符为d,它对应需要向后推3个字母,w,x,y,z,因此其对应的密文字符为z。上面的加密过程中,可以清晰的看到,密钥deceptive被重复使用。

古典密码体制将数学的方法引入到密码分析和研究中。这为现代加密技术的形成和发展奠定了坚实的基础。

2. 传统的加密方法有哪些

本文只是概述几种简单的传统加密算法,没有DES,没有RSA,没有想象中的高端大气上档次的东东。。。但是都是很传统很经典的一些算法

首先,提到加密,比如加密一段文字,让其不可读,一般人首先会想到的是将其中的各个字符用其他一些特定的字符代替,比如,讲所有的A用C来表示,所有的C用E表示等等…其中早的代替算法就是由Julius Caesar发明的Caesar,它是用字母表中每个字母的之后的第三个字母来代替其本身的(C=E(3,p)=(p+3) mod 26),但是,这种加密方式,很容易可以用穷举算法来破解,毕竟只有25种可能的情况..

为了改进上诉算法,增加其破解的难度,我们不用简单的有序的替代方式,我们让替代无序化,用其中字母表的一个置换(置换:有限元素的集合S的置换就是S的所有元素的有序排列,且每个元素就出现一次,如S={a,b}其置换就只有两种:ab,ba),这样的话,就有26!种方式,大大的增加了破解的难度,但是这个世界聪明人太多,虽然26!很多,但是语言本身有一定的特性,每个字母在语言中出现的相对频率可以统计出来的,这样子,只要密文有了一定数量,就可以从统计学的角度,得到准确的字母匹配了。

上面的算法我们称之为单表代替,其实单表代替密码之所以较容易被攻破,因为它带有原始字母使用频率的一些统计学特征。有两种主要的方法可以减少代替密码里明文结构在密文中的残留度,一种是对明文中的多个字母一起加密,另一种是采用多表代替密码。

先说多字母代替吧,最着名的就是playfair密码,它把明文中的双字元音节作为一个单元并将其转换成密文的双字元音节,它是一个基于由密钥词构成的5*5的字母矩阵中的,一个例子,如密钥为monarchy,将其从左往右从上往下填入后,将剩余的字母依次填入剩下的空格,其中I/J填入同一个空格:

对明文加密规则如下:
1 若p1 p2在同一行,对应密文c1 c2分别是紧靠p1 p2 右端的字母。其中第一列被看做是最后一列的右方。
2 若p1 p2在同一列,对应密文c1 c2分别是紧靠p1 p2 下方的字母。其中第一行被看做是最后一行的下方。
3 若p1 p2不在同一行,不在同一列,则c1 c2是由p1 p2确定的矩形的其他两角的字母,并且c1和p1, c2和p2同行。
4 若p1 p2相同,则插入一个事先约定的字母,比如Q 。
5 若明文字母数为奇数时,则在明文的末端添加某个事先约定的字母作为填充。

虽然相对简单加密,安全性有所提高,但是还是保留了明文语言的大部分结构特征,依旧可以破解出来,另一个有意思的多表代替密码是Hill密码,由数学家Lester Hill提出来的,其实就是利用了线性代数中的可逆矩阵,一个矩阵乘以它的逆矩阵得到单位矩阵,那么假设我们对密文每m个字母进行加密,那么将这m个字母在字母表中的序号写成矩阵形式设为P(如abc,[1,2,3]),密钥就是一个m阶的矩阵K,则C=P*K mod26,,解密的时候只要将密文乘上K的逆矩阵模26就可以了。该方法大大的增加了安全性。

3. 数据加密技术有哪些

加密技术通常分为两大类:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)
链路加密
对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。
由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。
尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。
在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。
在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。
在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。
节点加密
尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。
然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。
节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。
端到端加密
端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。
端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。
端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。

4. 常用的加密算法有哪些

对称密钥加密

对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。

  • 分组密码

  • 分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。

    与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。

  • DES、3DES

  • 数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的AES标准替代。

    DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。

    DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。

    3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。

  • AES

  • 高级加密标准 AES Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。

    AES的区块长度固定为128位,密钥长度可以是128位、192位或256位。AES算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。

    AES加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:

  • ECC

  • ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。

    ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。

  • 数字签名

  • 数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。

    数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。

5. 信息加密技术有哪些

保密通信、计算机密钥、防复制软盘 等都属于信息加密技术。通信过程中的加密主要是采用密码,在数字通信中可利用计算机采用加密法,改变负载信息的数码结构。计算机信息保护则以"软件加密"为主。目前世界上最流行的几种加密体制和加密算法有:"RSA算法"和"CCEP算法"等。为防止破密,加密软件还常采用硬件加密和加密软盘。一些软件商品常带有一种小的硬卡,这就是硬件加密措施。在软盘上用激光穿 孔,使软件的存储区有不为人所知的局部存坏,就可以防止非法复制。这样的加密软盘可以为不掌握加密技术的人员使用,以保护软件。

6. 当前主流的加密技术有哪些

目前主流的加密技术有对称加密例如DES,3DES和AES,然后还有非对称加密技术:例如RSA和椭圆加密算法。对称加密的话,就是用来加密和解密的密钥是一样的,非对称加密的话,加密的密钥和解密的密钥是不一样的,用加密的密钥加密以后,只有配对的另外一个密钥才能解开。
另外我们还可以常常看到MD5,SHA,SHA1之类的算法,其实他们不是加密算法,因为他们的结算结果不可逆,你没法从结果得到输入的数据是什么,他们的用途主要是为了防止泄密和修改数据,因为对于这些算法来说,每一个输入只能有一个输出,修改了输入就会使得输出变化很大,所以被人修改了数据的话通过这个算法就能知道了。另外我校验密码的时候,如果只是通过这个计算结果来对比的话,其他人如果不知道我的密码,即使他能解码我的程序也不行,因为程序里面只有结果,没有输入的密码。

7. 常见的5中加密技术

1、 透明加密
透明加密技术是近年来针对企业文件保密需求应运而生的一种文件加密技术。所谓透明,是指对使用者来说是未知的。当使用者在打开或编辑指定文件时,系统将自动对未加密的文件进行加密,对已加密的文件自动解密。文件在硬盘上是密文,在内存中是明文。一旦离开使用环境,由于应用程序无法得到自动解密的服务而无法打开,从而起来保护文件内容的效果。
例如红线隐私保护系统,采用透明加密。
2、 驱动透明加密
驱动加密技术基于windows的文件系统(过滤)驱动(IFS)技术,工作在windows的内核层。我们在安装计算机硬件时,经常要安装其驱动,如打印机、U盘驱动。文件系统驱动就是把文件作为一种设备来处理的一种虚拟驱动。当应用程序对某种后缀文件进行操作时,文件驱动会监控到程序的操作,改变其操作方式,从而达到透明加密的效果。
3、 磁盘加密技术
磁盘加密技术相对于文档加密技术,是在磁盘扇区级采用的加密技术,一般来说,该技术与上层应用无关,只针对特点的磁盘区域进行数据加密或者解密。
4.对称加密技术
例如DES,3DES和AES,对称加密,就是用来加密和解密的密钥是一样的。
5.非对称加密技术
例如RSA和椭圆加密算法。非对称加密,加密的密钥和解密的密钥是不一样的,用加密的密钥加密以后,只有配对的另外一个密钥才能解开。

8. 有哪些加密方法比较经典或者说说加密的历史.

加密之所以安全,绝非因不知道加密解密算法方法,而是加密的密钥是绝对的隐藏,流行的RSA和AES加密算法都是完全公开的,一方取得已加密的数据,就算知道加密算法也好,若没有加密的密钥,也不能打开被加密保护的信息。

加密作为保障数据安全的一种方式,它不是才有的,它产生的历史相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。

当时埃及人是最先使用特别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。

近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是German Enigma机,在第二次世界大战中德国人利用它创建了加密信息。此后,由于Alan Turing和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。



(8)其他加密技术扩展阅读:

相关标准

最早、最着名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)是由IBM公司在70年代发展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute,ANSI)承认。

DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的"每轮"密钥值由56位的完整密钥得出来。

DES用软件进行解码需用很长时间,而用硬件解码速度非常快。幸运的是,当时大多数黑客并没有足够的设备制造出这种硬件设备。

在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。当时DES被认为是一种十分强大的加密方法。



热点内容
诺基亚密码忘了打什么电话 发布:2024-09-17 03:27:09 浏览:555
树深度优先算法 发布:2024-09-17 03:26:58 浏览:472
跳转页源码 发布:2024-09-17 03:13:05 浏览:543
html文件上传表单 发布:2024-09-17 03:08:02 浏览:784
聊天软件编程 发布:2024-09-17 03:00:07 浏览:726
linuxoracle安装路径 发布:2024-09-17 01:57:29 浏览:688
两个安卓手机照片怎么同步 发布:2024-09-17 01:51:53 浏览:207
cf编译后没有黑框跳出来 发布:2024-09-17 01:46:54 浏览:249
安卓怎么禁用应用读取列表 发布:2024-09-17 01:46:45 浏览:524
win10设密码在哪里 发布:2024-09-17 01:33:32 浏览:662