python股票
‘壹’ python 代码 股票名称
Python语言代码呀,这个你可以学一下,现在Python语言已经特别的火,因为他特别的好学。
‘贰’ 怎么用python计算股票
作为一个python新手,在学习中遇到很多问题,要善于运用各种方法。今天,在学习中,碰到了如何通过收盘价计算股票的涨跌幅。
第一种:
读取数据并建立函数:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置
t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)
plt.show()
f(t)
第二种:
利用pandas里面的方法:
import pandas as pd
a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets
第三种:
close=a['close']
rets=close/close.shift(1)-1
print rets
总结:python是一种非常好的编程语言,一般而言,我们可以运用构建相关函数来实现自己的思想,但是,众所周知,python中里面的有很多科学计算包,里面有很多方法可以快速解决计算的需要,如上面提到的pandas中的pct_change()。因此在平时的使用中应当学会寻找更好的方法,提高运算速度。
‘叁’ 如何用Python炒股
如果想直接执行python程序的话可以写一个.bat新建一个记事本,然后写一段下面的代码,最后存成.bat文件,以后直接执行这段代码就可以了。其实也可以直接执行.py文件c:\program files\python file.py
‘肆’ 怎样用 Python 写一个股票自动交易的程序
方法一
前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。
方法二
是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的。
方法三
鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。
方法四
就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧
‘伍’ 怎样用 Python 写一个股票自动买卖的程序
方法一
前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。
方法二
是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的。
方法三
鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。
方法四
就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧
‘陆’ python用什么方法或者库可以拿到全部股票代码
首先你需要知道哪个网站上有所有股票代码,然后分析这个网站股票代码的存放方式,再利用python写一个爬虫去爬取所有的股票代码
‘柒’ python怎么分析所有股票
在 Python的QSTK中,是通过 s_datapath 变量,定义相应股票数据所在的文件夹。一般可以通过 QSDATA 这个环境变量来设置对应的数据文件夹。
具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到 s_datapath 变量所指定的文件夹中。然后可使用 Python的QSTK中,qstkutil.DataAccess进行数据访问。
‘捌’ 怎样用python处理股票
用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。
‘玖’ python 设计一个名为Stock的类来表示一个公司的股票
class Stock():
def __init__(self):
self.__no = ""
self.__name = ""
self.previousClosingPrice = 0
self.currentPrice = 0
def creatStock(self,stockInfo):
self.__no = stockInfo[0]
self.__name = stockInfo[1]
self.previousClosingPrice = stockInfo[2]
self.currentPrice = stockInfo[3]
def getStockName(self):
return(self.__name)
def getStockNo(self):
return(self.__no)
def setPreviousClosingPrice(self,price):
self.previousClosingPrice = price
def getPreviousClosingPrice(self):
return(self.previousClosingPrice)
def setCurrentPrice(self,price):
self.currentPrice = price
def getCurrentPrice(self):
return(self.currentPrice)
def getChangePercent(self):
return((self.currentPrice - self.previousClosingPrice)/self.currentPrice)
stock = Stock()
stock.creatStock(["601318","中国平安",63.21,64.39])
print(stock.getStockNo())
print(stock.getStockName())
print(stock.getCurrentPrice())
print(stock.getPreviousClosingPrice())
‘拾’ python的量化代码怎么用到股市中
2010 ~ 2017 沪深A股各行业量化分析
在开始各行业的量化分析之前,我们需要先弄清楚两个问题:
第一,A股市场上都有哪些行业;
第二,各行业自2010年以来的营收、净利润增速表现如何?
第一个问题
很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。
第二个问题
要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。
我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。
我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。
那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)
从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。
“2010-2017”投资于优质行业龙头的收益表现
选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。
3.1按营业收入规模构建的行业龙头投资组合
首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:
结论
通过以上行业分析和投资组合的历史回测可以看到:
先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。
在构建行业龙头投资组合时,净利润指标显着优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率
市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要。
出自:JoinQuant 聚宽数据 JQData