当前位置:首页 » 编程语言 » 深度学习python

深度学习python

发布时间: 2022-04-20 23:26:46

❶ 深度学习需要python基础吗

无论你是Python小白,还是初级算法工程师,亦或是技术骨干,甚至是技术总监,都建议你不要错过中公教育与中科院专家共同研发的《AI深度学习》。
1)Python小白快速入门

如果你马上面临毕业找工作,或者打算转到互联网IT行业,我们赠送的Python入门网课,可以让无Python编程基础的你迅速入门。之后,高阶版的《AI深度学习》,可以让你系统地入门了解深度学习的前沿技术、应用成果,助你快速入行。

2)初级算法工程师的实操指南

如果你是刚入行不到3年,还在打基础的初级算法工程师,《AI深度学习》会让你以企业级项目的实操开始,逐步提升能力。课程由中科院专家亲自传授,可反复观看,让你随时随地查漏补缺,直面复杂的开发环境,比 “网络一下” 更精准。

3)技术骨干的进阶秘籍

如果你是团队的技术骨干,《AI深度学习》可以帮助你系统梳理语音识别、图像识别、机器对话等前沿技术,搭建完整的技术体系;还能够帮你横向拓展相关领域知识,增强自身竞争力。

4)技术总监管理团队的神助攻

如果你是指点技术江山的一把手,这个紧跟市场需求开发的课程,可以帮助你快速掌握市场技术动向。课程交流群的不同学员,也可以让你了解每个层级人的真实想法,管理起来更加得心应手。

毫不夸张地说,只要你的工作与人工智能有关,《AI深度学习》就会成为你求职、工作、管理团队过程中不可或缺的神助攻。

❷ 想学深度学习开发,需要提前掌握哪些python知识

对着廖雪峰的python网站把进程和线程以上的东西(包括它)看完,
然后学习常用的库numpy,pandas,scipy(选学,用的不太多),matplotlib,
然后常用的机器学习算法可以用上面的东西解决了,
如果机器学习直接调库的话,sklearn,xgboost,lightgbm(后面的两个是大数据竞赛的热门),
下面转战深度学习:
现在推荐用pytorch,今年的顶会pytorch占了半壁江山,这个比tensorflow,keras简单易懂,而且功能强大,pytorch的库叫做torch,和torchvision同时服用效果更加(还可以加torchnet等一些其他模块)
然后在可视化方面:PIL,cv2,visdom或tensorborad
像NLP方向的话,还可以加些torchtext,jieba(中文),nltk(英文),各种API
一些其他方向也有很多库,网上也能搜到

❸ 有Python基础,学习深度学习会吃力么

看你Python的学习程度,相对那些没有学习过的肯定是要轻松一些,因为跟零基础相比你已经是入门了。

❹ 深度学习 python怎么入门 知乎

自学深度学习是一个漫长而艰巨的过程。您需要有很强的线性代数和微积分背景,良好的Python编程技能,并扎实掌握数据科学、机器学习和数据工程。即便如此,在你开始将深度学习应用于现实世界的问题,并有可能找到一份深度学习工程师的工作之前,你可能需要一年多的学习和实践。然而,知道从哪里开始,对软化学习曲线有很大帮助。如果我必须重新学习Python的深度学习,我会从Andrew Trask写的Grokking deep learning开始。大多数关于深度学习的书籍都要求具备机器学习概念和算法的基本知识。除了基本的数学和编程技能之外,Trask的书不需要任何先决条件就能教你深度学习的基础知识。这本书不会让你成为一个深度学习的向导(它也没有做这样的声明),但它会让你走上一条道路,让你更容易从更高级的书和课程中学习。用Python构建人工神经元
大多数深度学习书籍都是基于一些流行的Python库,如TensorFlow、PyTorch或Keras。相比之下,《运用深度学习》(Grokking Deep Learning)通过从零开始、一行一行地构建内容来教你进行深度学习。

《运用深度学习》
你首先要开发一个人工神经元,这是深度学习的最基本元素。查斯克将带领您了解线性变换的基本知识,这是由人工神经元完成的主要计算。然后用普通的Python代码实现人工神经元,无需使用任何特殊的库。
这不是进行深度学习的最有效方式,因为Python有许多库,它们利用计算机的图形卡和CPU的并行处理能力来加速计算。但是用普通的Python编写一切对于学习深度学习的来龙去是非常好的。
在Grokking深度学习中,你的第一个人工神经元只接受一个输入,将其乘以一个随机权重,然后做出预测。然后测量预测误差,并应用梯度下降法在正确的方向上调整神经元的权重。有了单个神经元、单个输入和单个输出,理解和实现这个概念变得非常容易。您将逐渐增加模型的复杂性,使用多个输入维度、预测多个输出、应用批处理学习、调整学习速率等等。
您将通过逐步添加和修改前面章节中编写的Python代码来实现每个新概念,逐步创建用于进行预测、计算错误、应用纠正等的函数列表。当您从标量计算转移到向量计算时,您将从普通的Python操作转移到Numpy,这是一个特别擅长并行计算的库,在机器学习和深度学习社区中非常流行。
Python的深度神经网络
有了这些人造神经元的基本构造块,你就可以开始创建深层神经网络,这基本上就是你将几层人造神经元叠放在一起时得到的结果。
当您创建深度神经网络时,您将了解激活函数,并应用它们打破堆叠层的线性并创建分类输出。同样,您将在Numpy函数的帮助下自己实现所有功能。您还将学习计算梯度和传播错误通过层传播校正跨不同的神经元。

随着您越来越熟悉深度学习的基础知识,您将学习并实现更高级的概念。这本书的特点是一些流行的正规化技术,如早期停止和退出。您还将获得自己版本的卷积神经网络(CNN)和循环神经网络(RNN)。
在本书结束时,您将把所有内容打包到一个完整的Python深度学习库中,创建自己的层次结构类、激活函数和神经网络体系结构(在这一部分,您将需要面向对象的编程技能)。如果您已经使用过Keras和PyTorch等其他Python库,那么您会发现最终的体系结构非常熟悉。如果您没有,您将在将来更容易地适应这些库。
在整本书中,查斯克提醒你熟能生巧;他鼓励你用心编写自己的神经网络,而不是复制粘贴任何东西。
代码库有点麻烦
并不是所有关于Grokking深度学习的东西都是完美的。在之前的一篇文章中,我说过定义一本好书的主要内容之一就是代码库。在这方面,查斯克本可以做得更好。
在GitHub的Grokking深度学习库中,每一章都有丰富的jupiter Notebook文件。jupiter Notebook是一个学习Python机器学习和深度学习的优秀工具。然而,jupiter的优势在于将代码分解为几个可以独立执行和测试的小单元。Grokking深度学习的一些笔记本是由非常大的单元格组成的,其中包含大量未注释的代码。

这在后面的章节中会变得尤其困难,因为代码会变得更长更复杂,在笔记本中寻找自己的方法会变得非常乏味。作为一个原则问题,教育材料的代码应该被分解成小单元格,并在关键区域包含注释。
此外,Trask在Python 2.7中编写了这些代码。虽然他已经确保了代码在Python 3中也能顺畅地工作,但它包含了已经被Python开发人员弃用的旧编码技术(例如使用“for i in range(len(array))”范式在数组上迭代)。
更广阔的人工智能图景
Trask已经完成了一项伟大的工作,它汇集了一本书,既可以为初学者,也可以为有经验的Python深度学习开发人员填补他们的知识空白。
但正如泰温·兰尼斯特(Tywin Lannister)所说(每个工程师都会同意),“每个任务都有一个工具,每个工具都有一个任务。”深度学习并不是一根可以解决所有人工智能问题的魔杖。事实上,对于许多问题,更简单的机器学习算法,如线性回归和决策树,将表现得和深度学习一样好,而对于其他问题,基于规则的技术,如正则表达式和几个if-else子句,将优于两者。

关键是,你需要一整套工具和技术来解决AI问题。希望Grokking深度学习能够帮助你开始获取这些工具。
你要去哪里?我当然建议选择一本关于Python深度学习的深度书籍,比如PyTorch的深度学习或Python的深度学习。你还应该加深你对其他机器学习算法和技术的了解。我最喜欢的两本书是《动手机器学习》和《Python机器学习》。
你也可以通过浏览机器学习和深度学习论坛,如r/MachineLearning和r/deeplearning subreddits,人工智能和深度学习Facebook组,或通过在Twitter上关注人工智能研究人员来获取大量知识。
AI的世界是巨大的,并且在快速扩张,还有很多东西需要学习。如果这是你关于深度学习的第一本书,那么这是一个神奇旅程的开始。

❺ Python的深度学习框架有哪些

中公教育联合中科院专家打造的深度学习分八个阶段进行学习:

第一阶段AI概述及前沿应用成果介绍

  • 深度学习的最新应用成果

  • 单层/深度学习与机器学习

  • 人工智能的关系及发展简

  • 第二阶段神经网络原理及TensorFlow实战

  • 梯度下降优化方法

  • 前馈神经网络的基本结构和训练过程

  • 反向传播算法

  • TensorFlow开发环境安装

  • “计算图”编程模型

  • 深度学习中图像识别的操作原理

  • 第三阶段循环神经网络原理及项目实战

  • 语言模型及词嵌入

  • 词嵌入的学习过程

  • 循环神经网络的基本结构

  • 时间序列反向传播算法

  • 长短时记忆网络(LSTM)的基本结构

  • LSTM实现语言模型

  • 第四阶段生成式对抗网络原理及项目实战

  • 生成式对抗网络(GAN)的基本结构和原理

  • GAN的训练过程

  • GAN用于图片生成的实现

  • 第五阶段深度学习的分布式处理及项目实战

  • 多GPU并行实现

  • 分布式并行的环境搭建

  • 分布式并行实现

  • 第六阶段深度强化学习及项目实战

  • 强化学习介绍

  • 智能体Agent的深度决策机制(上)

  • 智能体Agent的深度决策机制(中)

  • 智能体Agent的深度决策机制(下)

  • 第七阶段车牌识别项目实战

  • 数据集介绍及项目需求分析

  • OpenCV库介绍及车牌定位

  • 车牌定位

  • 车牌识别

  • 学员项目案例评讲

  • 第八阶段深度学习前沿技术简介

  • 深度学习前沿技术简介

  • 元学习

  • 迁移学习等

详情查看深度学习。

❻ 深度学习是不是一定要有python基础

是的,深度学习是建立在Python的基础上。不过U就业的深度学习赠送 Python 第一阶段网课,为无 Python 编程基础学员提供学习资料。

❼ 为什么深度学习用python

用python进行深度学习的原因是:1、python是解释语言,写程序很方便;2、python是胶水语言可以结合C++,使得写出来的代码可以达到C++的效率。
首先python是解释语言,写程序很方便,所以做研究的人喜欢用它。正如为什么很多做研究的人用
Matlab那样。出成果才是研究者关心的事情,实现只要方便就行。
然而在性能方面,我拿python和C++做个比较。
C++的cpu效率是远远高于python的,这点大家都承认吧。不过python是一-门胶水语言,它可以
和任何语言结合,基于这个优点,很多数据处理的python库底层都是C++实现的,意思就是说:
你用python写code,但效率是C+ +的。只有那些for 循环,还是用python的效率。
近年来机器学习最要是深度学习,而深度学习使用cuda gpu加速远比cpu要快,而cuda 是C+ +写
的。所以现在TensorLayer、theano 等深度学习库都是python编程、底层c++.
而那些for循环的效率,在整体耗时里面完全可以忽略!
有的人就会说,那为什么不直接用c++写cuda?不是更快吗?我想告诉大家,如果没有多年的cuda
经验,写出来的代码效率绝对是个问题。
推荐课程:Python机器学习(Mooc礼欣、嵩天教授)

❽ 深度学习需要再回去学一遍Python吗

深度学习的基础语言是python,可以边学边练,遇到什么知识点去熟悉一遍就行了

❾ Python中的深度学习是怎么一回事学完有前景吗

深度学习无疑就是在原本的基础上更深参差的去开发,一般python学出来做一个常规中级的工程师是没问题的。但是你要写更高级的语言,就要有更高级的理解和学习,才能做出更智能高级的产品。如果以后是想要往更好更大的公司发展的话是学还是有必要的

❿ 深度学习需要有python基础吗

首先,深度学习需要Python基础,如果你会Java也是可以的,计算机专业同样可以学习。

深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:

(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。

(2)基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding)。

(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。

深度学习作为实现机器学习的技术,拓展了人工智能领域范畴,主要应用于图像识别、语音识别、自然语言处理。推动市场从无人驾驶和机器人技术行业扩展到金融、医疗保健、零售和农业等非技术行业,因此掌握深度学习的AI工程师成为了各类型企业的招聘热门岗位。

了解更多查看深度学习。

热点内容
javascript设计模式源码 发布:2025-01-24 14:49:07 浏览:908
linqtosql查询 发布:2025-01-24 14:48:57 浏览:120
华为手机更换开机密码如何操作 发布:2025-01-24 14:43:15 浏览:699
快手等待上传 发布:2025-01-24 14:41:37 浏览:380
apache和php7 发布:2025-01-24 14:32:26 浏览:892
linuxio文件 发布:2025-01-24 13:40:21 浏览:438
在excel设密码如何取消 发布:2025-01-24 13:38:54 浏览:483
电脑装存储时不能开机 发布:2025-01-24 13:38:52 浏览:285
2000人同时在线的小程序需要什么服务器 发布:2025-01-24 13:37:17 浏览:853
怎么搭建linux服务器配置 发布:2025-01-24 13:37:16 浏览:113