当前位置:首页 » 编程语言 » python图片识别验证码

python图片识别验证码

发布时间: 2022-04-19 02:23:20

python抓取网页时是如何处理验证码的

python抓取网页时是如何处理验证码的?下面给大家介绍几种方法:

1、输入式验证码

这种验证码主要是通过用户输入图片中的字母、数字、汉字等进行验证。如下图:

解决思路:这种是最简单的一种,只要识别出里面的内容,然后填入到输入框中即可。这种识别技术叫OCR,这里我们推荐使用Python的第三方库,tesserocr。对于没有什么背影影响的验证码如图2,直接通过这个库来识别就可以。但是对于有嘈杂的背景的验证码这种,直接识别识别率会很低,遇到这种我们就得需要先处理一下图片,先对图片进行灰度化,然后再进行二值化,再去识别,这样识别率会大大提高。

相关推荐:《Python入门教程》

2、滑动式验证码

这种是将备选碎片直线滑动到正确的位置,如下图:

解决思路:对于这种验证码就比较复杂一点,但也是有相应的办法。我们直接想到的就是模拟人去拖动验证码的行为,点击按钮,然后看到了缺口的位置,最后把拼图拖到缺口位置处完成验证。

第一步:点击按钮。然后我们发现,在你没有点击按钮的时候那个缺口和拼图是没有出现的,点击后才出现,这为我们找到缺口的位置提供了灵感。

第二步:拖到缺口位置。

我们知道拼图应该拖到缺口处,但是这个距离如果用数值来表示?

通过我们第一步观察到的现象,我们可以找到缺口的位置。这里我们可以比较两张图的像素,设置一个基准值,如果某个位置的差值超过了基准值,那我们就找到了这两张图片不一样的位置,当然我们是从那块拼图的右侧开始并且从左到右,找到第一个不一样的位置时就结束,这是的位置应该是缺口的left,所以我们使用selenium拖到这个位置即可。

这里还有个疑问就是如何能自动的保存这两张图?

这里我们可以先找到这个标签,然后获取它的location和size,然后 top,bottom,left,right = location['y'] ,location['y']+size['height']+ location['x'] + size['width'] ,然后截图,最后抠图填入这四个位置就行。

具体的使用可以查看selenium文档,点击按钮前抠张图,点击后再抠张图。最后拖动的时候要需要模拟人的行为,先加速然后减速。因为这种验证码有行为特征检测,人是不可能做到一直匀速的,否则它就判定为是机器在拖动,这样就无法通过验证了。

3、点击式的图文验证和图标选择

图文验证:通过文字提醒用户点击图中相同字的位置进行验证。

图标选择: 给出一组图片,按要求点击其中一张或者多张。借用万物识别的难度阻挡机器。

这两种原理相似,只不过是一个是给出文字,点击图片中的文字,一个是给出图片,点出内容相同的图片。

这两种没有特别好的方法,只能借助第三方识别接口来识别出相同的内容,推荐一个超级鹰,把验证码发过去,会返回相应的点击坐标。

然后再使用selenium模拟点击即可。具体怎么获取图片和上面方法一样。

4、宫格验证码

这种就很棘手,每一次出现的都不一样,但是也会出现一样的。而且拖动顺序都不一样。

但是我们发现不一样的验证码个数是有限的,这里采用模版匹配的方法。我觉得就好像暴力枚举,把所有出现的验证码保存下来,然后挑出不一样的验证码,按照拖动顺序命名,我们从左到右上下到下,设为1,2,3,4。上图的滑动顺序为4,3,2,1,所以我们命名4_3_2_1.png,这里得手动搞。当验证码出现的时候,用我们保存的图片一一枚举,与出现这种比较像素,方法见上面。如果匹配上了,拖动顺序就为4,3,2,1。然后使用selenium模拟即可。

② 怎么通过python获取验证码图片

因为验证码图片是禁止缓存的 ,当然无法用缓存函数获取了。 解决方法有很多。可以用同样的会话再次请求得到图片。

③ 如何使用python识别验证码

第一种,将验证码保存本地,然后手动输入。
第二种,外包给验证码识别公司
第三种,学习算法识别

④ python如何识别验证码

我们首先识别最简单的一种验证码,即图形验证码。这种验证码最早出现,现在也很常见,一般由4位字母或者数字组成。例如,中国知网的注册页面有类似的验证码,页面如下所示:

表单中最后一项就是图形验证码,我们必须完全正确输入图中的字符才可以完成注册。

更多有关验证码的知识,可以参考这些文章:

Python3爬虫进阶:识别图形验证码

Python3爬虫进阶:识别极验滑动验证码

Python3爬虫进阶:识别点触点选验证码

Python3爬虫进阶:识别微博宫格验证码

·本节目标以知网的验证码为例,讲解利用OCR技术识别图形验证码的方法。

·准备工作识别图形验证码需要库tesserocr,以mac安装为例:在mac下,我们首先使用Homebrew安装ImageMagick和tesseract库: brew install imagemagickbrew install tesseract 接下来再安装tesserocr即可:pip3 install tesserocr pillow这样我们就完成了 tesserocr的安装。

·获取验证码为了便于实验,我们先将验证码的图片保存到本地。打开开发者工具,找到验证码元素。验证码元素是一张图片,它的ser属 性是CheckCode.aspk。所以我们直接打开如下链接就可以看到一个验证码,右键保存即可,将其命名为code.jpg:

这样我们就得到一张验证码图片,以供测试识别使用。

相关推荐:《Python教程》

识别测试

接下来新建一个项目,将验证码图片放到项目根目录下,用tesserocr库识别该验证码,代码如下所示:

这里我们新建了一个Image对戏那个,调用了tesserocr的image_to_text( )方法。传入该Image对象即可完成识别,实现过程非常简单,结果如下:

我们可以看到,识别的结果和实际结果有偏差,这是因为验证码内的多余线条干扰了图片的识别。

另外,tesserocr还有一个更加简单的方法,这个方法可以直接将图片文件转为字符串,代码如下:

不过这种方法的识别效果不如上一种的好。

验证码处理

对于上面的图片,我们可以看到其实并没有完全识别正确,所以我们需要对图像作进一步的处理,如灰度转换、二值化等操作。

我们可以利用Image对象的convert( )方法参数传入L,即可将图片转化为灰度图像,代码如下:

传入1即可将图片进行二值化处理,如下所示:

我们还可以指定二值化的阈值。上面的方法采用的是默认阈值127。不过我们不能直接转化原图,要将原图先转化为灰度图像,然后再指定二值化阈值,代码如下:

在这里,变量threshold代表二值化阈值,阈值设置为160,之后我们来看看我们的结果:

我们可以看到现在的二维码就比较方便我们进行识别了;那么对于一些有干扰的图片,我们做一些灰度和二值化处理,这会提高图片识别的正确率。

⑤ 如何利用Python做简单的验证码识别

先是获取验证码样本。。。我存了大概500个。
用dia测了测每个字之间的间距,直接用PIL开始切。
from PIL import Image
for j in range(0,500):
f=Image.open("../test{}.jpg".format(j))
for i in range(0,4):
f.crop((20+20*i,0,40+20*i,40)).save("test{0}-{1}.jpg".format(j,i+1))

上面一段脚本的意思是把jpg切成四个小块然后保存
之后就是二值化啦。
def TotallyShit(im):
x,y=im.size
mmltilist=list()
for i in range(x):
for j in range(y):
if im.getpixel((i,j))<200:
mmltilist.append(1)
else:
mmltilist.append(0)
return mmltilist

咳咳,不要在意函数的名字。上面的一段代码的意思是遍历图片的每个像素点,颜色数值小于200的用1表示,其他的用0表示。
其中的im代表的是Image.open()类型。
切好的图片长这样的。
只能说这样切的图片还是很粗糙,很僵硬。
下面就是分类啦。
把0-9,“+”,”-“的图片挑好并放在不同的文件夹里面,这里就是纯体力活了。
再之后就是模型建立了。
这里我试了自己写的还有sklearn svm和sklearn neural_network。发现最后一个的识别正确率高的多。不知道是不是我样本问题QAQ。
下面是模型建立的代码
from sklearn.neural_network import MLPClassifier
import numpy as np
def clf():
clf=MLPClassifier()
mmltilist=list()
X=list()
for i in range(0,12):
for j in os.listdir("douplings/douplings-{}".format(i)):
mmltilist.append(TotallyShit(Image.open("douplings/douplings-{0}/{1}".format(i,j)).convert("L")))
X.append(i)
clf.fit(mmltilist,X)
return clf

大概的意思是从图片源中读取图片和label然后放到模型中去跑吧。
之后便是图像匹配啦。
def get_captcha(self):
with open("test.jpg","wb") as f:
f.write(self.session.get(self.live_captcha_url).content)
gim=Image.open("test.jpg").convert("L")
recognize_list=list()
for i in range(0,4):
part=TotallyShit(gim.crop((20+20*i,0,40+20*i,40)))
np_part_array=np.array(part).reshape(1,-1)
predict_num=int(self.clf.predict(np_part_array)[0])
if predict_num==11:
recognize_list.append("+")
elif predict_num==10:
recognize_list.append("-")
else:
recognize_list.append(str(predict_num))
return ''.join(recognize_list)

最后eval一下识别出来的字符串就得出结果了。。
顺便提一句现在的bilibili登陆改成rsa加密了,麻蛋,以前的脚本全部作废,心好痛。
登陆的代码。
import time
import requests
import rsa
r=requests.session()
data=r.get("act=getkey&_="+str(int(time.time()*1000))).json()
pub_key=rsa.PublicKey.load_pkcs1_openssl_pem(data['key'])
payload = {
'keep': 1,
'captcha': '',
'userid': "youruserid",
'pwd': b64encode(rsa.encrypt((data['hash'] +"yourpassword").encode(), pub_key)).decode(),
}
r.post("",data=payload)

⑥ python验证码识别

orc文字识别,现在比较流行的是通过人工智能训练CNN神经网络来识别。

大体流程

  1. 准备训练数据。训练数据可以自己写个程序生成验证码,和标准答案。

  2. 构建CNN模型。这个比较简单,使用keras框架,5分钟的事情。

  3. 训练。不停地把数据feed给程序,直到准确率达到你的期望,推荐使用GPU加速

  4. 预测。加载模型,把验证码图片feed给模型,得出结果

希望对你有帮助。

⑦ 用python如何直接获取jsp生成的验证码图片

你只需要正常请求图片就行了,分析一下image的src,把它拼接成一个完整的URL去请求就好了,得到的有可能是BASE64编码串,或者是文件,把它保存下来就可以了。

⑧ 如何利用Python 做验证码识别

用python加“验证码”为关键词在里搜一下,可以找到很多关于验证码识别的文章。我大体看了一下,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别。不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析。
一、图片处理
这个验证码中主要的影响因素是中间的曲线,首先考虑去掉图片中的曲线。考虑了两种算法:
第一种是首先取到曲线头的位置,即x=0时,黑点的位置。然后向后移动x的取值,观察每个x下黑点的位置,判断前后两个相邻黑点之间的距离,如果距离在一定范围内,可以基本判断该点是曲线上的点,最后将曲线上的点全部绘成白色。试了一下这种方法,结果得到的图片效果很一般,曲线不能完全去除,而且容量将字符的线条去除。
第二种考虑用单位面积内点的密度来进行计算。于是首先计算单位面积内点的个数,将单位面积内点个数少于某一指定数的面积去除,剩余的部分基本上就是验证码字符的部分。本例中,为了便于操作,取了5*5做为单位范围,并调整单位面积内点的标准密度为11。处理后的效果:
二、字符验证
这里我使用的方法是利用pytesser进行ocr识别,但由于这类验证码字符的不规则性,使得验证结果的准确性并不是很高。具体哪位大牛,有什么好的办法,希望能给指点一下。
三、准备工作与代码实例
1、PIL、pytesser、tesseract
(1)安装PIL:下载地址:http:// www. pythonware. com/procts/pil/(2)pytesser:下载地址:http :/ /code. google. com/p/pytesser/,下载解压后直接放在代码相同的文件夹下,即可使用。
(3)Tesseract OCR engine下载:http: / / code.google. com/p/tesseract-ocr/,下载后解压,找到tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。
2、具体代码
复制代码
#encoding=utf-8
###利用点的密度计算
import Image,ImageEnhance,ImageFilter,ImageDrawimport sys
from pytesser import *
#计算范围内点的个数
def numpoint(im):
w,h = im.size
data = list( im.getdata() )
mumpoint=0
for x in range(w):
for y in range(h):
if data[ y*w + x ] !=255:#255是白色
mumpoint+=1
return mumpoint
#计算5*5范围内点的密度
def pointmi(im):
w,h = im.size
p=[]
for y in range(0,h,5):
for x in range(0,w,5):
box = (x,y, x+5,y+5)
im1=im.crop(box)
a=numpoint(im1)
if a<11:##如果5*5范围内小于11个点,那么将该部分全部换为白色。
for i in range(x,x+5):
for j in range(y,y+5):
im.putpixel((i,j), 255)
im.save(r'img.jpg')
def ocrend():##识别
image_name = "img.jpg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.save("1.tif")
print image_file_to_string('1.tif')
if __name__=='__main__':
image_name = "1.png"
im = Image.open(image_name)
im = im.filter(ImageFilter.DETAIL)
im = im.filter(ImageFilter.MedianFilter())enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
##a=remove_point(im)
pointmi(im)
ocrend()

⑨ python怎样调用第三方平台识别验证码

一、pytesseract介绍

1、pytesseract说明

pytesseract最新版本0.1.6,网址:h

Python-tesseract is a wrapper for google's Tesseract-OCR
( ht-ocr/ ). It is also useful as a
stand-alone invocation script to tesseract, as it can read all image types
supported by the Python Imaging Library, including jpeg, png, gif, bmp, tiff,
and others, whereas tesseract-ocr by default only supports tiff and bmp.
Additionally, if used as a script, Python-tesseract will print the recognized
text in stead of writing it to a file. Support for confidence estimates and
bounding box data is planned for future releases.

翻译一下大意:

a、Python-tesseract是一个基于google's Tesseract-OCR的独立封装包;

b、Python-tesseract功能是识别图片文件中文字,并作为返回参数返回识别结果;

c、Python-tesseract默认支持tiff、bmp格式图片,只有在安装PIL之后,才能支持jpeg、gif、png等其他图片格式;

2、pytesseract安装

INSTALLATION:

Prerequisites:
* Python-tesseract requires python 2.5 or later or python 3.
* You will need the Python Imaging Library (PIL). Under Debian/Ubuntu, this is
the package "python-imaging" or "python3-imaging" for python3.
* Install google tesseract-ocr from hsseract-ocr/ .
You must be able to invoke the tesseract command as "tesseract". If this
isn't the case, for example because tesseract isn't in your PATH, you will
have to change the "tesseract_cmd" variable at the top of 'tesseract.py'.
Under Debian/Ubuntu you can use the package "tesseract-ocr".

Installing via pip:
See the [pytesseract package page](hi/pytesseract)
```
$> sudo pip install pytesseract

翻译一下:

a、Python-tesseract支持python2.5及更高版本;

b、Python-tesseract需要安装PIL(Python Imaging Library) ,来支持更多的图片格式;

c、Python-tesseract需要安装tesseract-ocr安装包,具体参看上一篇博文。

综上,Pytesseract原理:

1、上一篇博文中提到,执行命令行 tesseract.exe 1.png output -l eng ,可以识别1.png中文字,并把识别结果输出到output.txt中;

2、Pytesseract对上述过程进行了二次封装,自动调用tesseract.exe,并读取output.txt文件的内容,作为函数的返回值进行返回。

二、pytesseract使用

USAGE:
```
> try:
> import Image
> except ImportError:
> from PIL import Image
> import pytesseract
> print(pytesseract.image_to_string(Image.open('test.png')))
> print(pytesseract.image_to_string(Image.open('test-european.jpg'),))

可以看到:

1、核心代码就是image_to_string函数,该函数还支持-l eng 参数,支持-psm 参数。

用法:
image_to_string(Image.open('test.png'),lang="eng" config="-psm 7")

2、pytesseract里调用了image,所以才需要PIL,其实tesseract.exe本身是支持jpeg、png等图片格式的。

实例代码,识别某公共网站的验证码(大家千万别干坏事啊,思虑再三,最后还是隐掉网站域名,大家去找别的网站试试吧……):

View Code

⑩ python 如果抓取验证码图片 类似12306的登录验证码图片

这个以前做过多次。最大的麻烦是验证码的识别算法的识别率太低。比如12306那种网站你登陆错3次就限制你20分钟。所以除非你有33%以上的识别率否则不要尝试了。

通常做法是另存验证码图片,通常收集几十个,然后训练自己的识别算法。我曾经用PIL库自己做过识别算法,最高只有10%的识别率。效率还可以,一秒可以识别10次左右。主要是图片很小,所以处理起来也快。

验证码识别还有多少公开的算法,只能用来参考。不过真正识别都需要自己根据实际情况去训练改进算法。

热点内容
搭建100人的游戏服务器 发布:2025-01-23 03:37:43 浏览:516
b站台解析服务器ip 发布:2025-01-23 03:36:12 浏览:202
安卓手机在哪里看港剧 发布:2025-01-23 03:35:30 浏览:51
黑漫的服务器ip 发布:2025-01-23 03:16:40 浏览:650
tplink无internet访问 发布:2025-01-23 03:15:18 浏览:566
原神用安卓手机玩为什么画质那么低 发布:2025-01-23 03:09:31 浏览:847
空调压缩机是外机吗 发布:2025-01-23 03:09:31 浏览:950
大学数据库学 发布:2025-01-23 02:54:30 浏览:588
部队营区监控系统录像存储多少天 发布:2025-01-23 02:49:26 浏览:523
oraclelinux用户名和密码 发布:2025-01-23 02:43:06 浏览:404