当前位置:首页 » 编程语言 » bp神经网络python

bp神经网络python

发布时间: 2022-04-12 16:24:17

❶ BP神经网络的原理的BP什么意思

原文链接:http://tecdat.cn/?p=19936

在本教程中,您将学习如何在R语言中创建神经网络模型。

神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。

该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。

本教程将涵盖以下主题:

  • 神经网络概论

  • 正向传播和反向传播

  • 激活函数

  • R中神经网络的实现

  • 案例

  • 利弊

  • 结论

  • 神经网络概论

    神经网络是受人脑启发执行特定任务的算法。它是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。

    人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。

    创建测试数据集

    创建测试数据集:专业知识得分和沟通技能得分

  • # 创建测试集test=data.frame(专业知识,沟通技能得分)

  • 预测测试集的结果

    使用计算函数预测测试数据的概率得分。

  • ## 使用神经网络进行预测Pred$result

  • 0.99282020800.33355439250.9775153014

  • 现在,将概率转换为二进制类。

  • # 将概率转换为设置阈值0.5的二进制类别pred <- ifelse(prob>0.5, 1, 0)pred

  • 101

  • 预测结果为1,0和1。

    利弊

    神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。

    还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位着名的神经网络研究人员说:“神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”

    神经网络的用途

    神经网络的特性提供了许多应用方面,例如:

  • 模式识别:神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。

  • 异常检测:神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。

  • 时间序列预测:神经网络可用于预测时间序列问题,例如股票价格,天气预报。

  • 自然语言处理:神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。

  • 最受欢迎的见解

    1.r语言用神经网络改进nelson-siegel模型拟合收益率曲线分析

    2.r语言实现拟合神经网络预测和结果可视化

    3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析

    4.用于nlp的python:使用keras的多标签文本lstm神经网络分类

    5.用r语言实现神经网络预测股票实例

    6.R语言基于Keras的小数据集深度学习图像分类

    7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译

    8.python中基于网格搜索算法优化的深度学习模型分析糖

    9.matlab使用贝叶斯优化的深度学习

❷ 有没有用python实现的遗传算法优化BP神经网络的代码

下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen

❸ 那个最简单的BP神经网络是什么意思啊,求解答

最简单的BP神经网络?可能指单输入单输出的单隐层感知器模型。

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

❹ 什么是BP神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

❺ 怎样用python构建一个卷积神经网络

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras

❻ 除了MATLAB能做BP神经网络,还有其他什么软件能做

除了MATLAB能做BP神经网络,还有其他什么软件能做
理论上编程语言都可以,比如VB,C语言,过程也都是建模、量化、运算及结果输出(图、表),但是matlab发展到现在,集成了很多的工具箱,所以用的最为广泛,用其他的就得是要从源码开发入手了,何必舍近求远。

❼ 最能体现一个人懂不懂BP神经网络的问题

写一下BP的反向传播公式,基本上理解这个了整个BP就算可以自己写出来了

❽ python做BP神经网络,进行数据预测,训练的输入和输出值都存在负数,为什么预测值永远为正数

因为sigmoid就是预测0到1之间的连续值。通常当二分类预测使用,你的问题是否复合二分类如果可以就把类别换成0和1就可以了,如果是做回归那就不行了,要换其他损失函数

❾ 关于Python的BP神经网络的一个代码

这个神经网络只能处理分两类的的情况,这是由这个神经网络的结构决定了的。

如果想应付分多类的情况,必须对输出层作softmax处理。

具体代码可参看这里:
http://www.cnblogs.com/hhh5460/p/5434531.html

热点内容
pythonextendor 发布:2025-01-20 03:40:11 浏览:199
为什么安卓手机储存越来越少 发布:2025-01-20 03:40:07 浏览:925
算法和人性 发布:2025-01-20 03:28:31 浏览:473
软件编程1级 发布:2025-01-20 03:19:39 浏览:952
嫁个编程男 发布:2025-01-20 02:51:39 浏览:933
挂劳文件夹 发布:2025-01-20 02:44:22 浏览:521
写编程英文 发布:2025-01-20 02:37:50 浏览:16
安卓怎么修改饥荒 发布:2025-01-20 02:20:54 浏览:619
android64位开发环境 发布:2025-01-20 01:58:01 浏览:262
阿里云服务器能搭美国站点 发布:2025-01-20 01:49:34 浏览:279