当前位置:首页 » 编程语言 » python神经网络代码

python神经网络代码

发布时间: 2022-04-06 22:45:01

⑴ 用python编写的神经网络结果怎么可视化

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:

在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

⑵ python简单神经网络的实现 求问这儿是怎么实现syn0均值为0的,以及我在Python3中运行发现l1的shape也不对

np.random.random 返回[0,1)区间的随机数,2*np.random.random - 1 返回[-1,1)的随机数,具体可以看网页链接

看这个神经网络结构应该就输入输出两层,l1的shape为np.dot(l0,syn0),[4*3],[3*1]的矩阵相乘得到[4*1]的矩阵,y = np.array([[0,1,1,0]]).T,y也是[4*1]的矩阵

⑶ 有没有用python实现的遗传算法优化BP神经网络的代码

下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen

⑷ 关于Python的BP神经网络的一个代码

这个神经网络只能处理分两类的的情况,这是由这个神经网络的结构决定了的。

如果想应付分多类的情况,必须对输出层作softmax处理。

具体代码可参看这里:
http://www.cnblogs.com/hhh5460/p/5434531.html

⑸ python神经网络需要很强的pythob基础吗

不需要。
python神经网络的优点是不太需要配置环境,不太需要注重变量的类型,有非常多优秀的数据库可以方便调用,对于没有志向深入学习编程语言以及编程小白入门非常友好,所以python神经网络不需要很强的pythob基础,只要用心学,就可以做到。
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

⑹ Python这一行代码什么意思这是神经网络里的一部分Python实现代码,正在手工往C++迁移

那是个tuple,显然是尺寸的三个分量啊。

⑺ 怎么用python训练神经网络

Python 可以用scikit-learn、Theano、pybrain等库来做神经网络,详细的内容可以搜索相关的例子和官方文档。

⑻ 如何用9行Python代码编写一个简易神经网络

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。

我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。

训练过程

但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:

取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。

计算误差,即神经元的输出与训练样本中的期待输出之间的差值。

根据误差略微地调整权重。

重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。

这个过程就是back propagation。

计算神经元输出的公式

你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。

调整权重的公式

我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:

我们使用Sigmoid曲线计算神经元的输出

如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式

从图四可以看出,在较大数值处,Sigmoid曲线斜率小

如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点

Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。

构造Python代码

虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:

exp--自然指数

array--创建矩阵

dot--进行矩阵乘法

random--产生随机数

比如, 我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。

我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。

我们做到了!我们用Python构建了一个简单的神经网络!

首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!

传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。

⑼ 神经网络,python报错:AttributeError: 'DataFrame' object has no attribute 'ravel'

y_train.values.ravel()
这样试试,因为你的y不是一维向量。
我建议你先看看数据

热点内容
服务器共享文件如何查看访问记录 发布:2025-01-19 10:08:55 浏览:400
datasourceSQL 发布:2025-01-19 10:01:25 浏览:838
aspnet网站的编译 发布:2025-01-19 10:00:49 浏览:334
路特仕A9工厂密码是多少 发布:2025-01-19 09:59:44 浏览:257
linux的命令find 发布:2025-01-19 09:42:55 浏览:174
简单的计算机编程 发布:2025-01-19 09:39:54 浏览:520
c语言table 发布:2025-01-19 09:27:50 浏览:953
java8gc 发布:2025-01-19 09:03:30 浏览:648
mac个人收藏添加文件夹 发布:2025-01-19 08:55:12 浏览:531
股票编程书籍 发布:2025-01-19 08:55:01 浏览:120