python语法分析
① python语法分析问题,这是什么问题,怎么改啊
没有用过nltk这个机器学习的库。不过从语法解析上看。你的格式不对。
我略略查了一下,它的语法应该是这样子
S->'NP'|'VP'
PP->'P'|'NP'
你修改一下看看。另外它的noterminals似乎是一个特殊含义。不是种换行符。下面是一个较完整的示例
-
def cfg_demo():
"""
A demonstration showing how C{ContextFreeGrammar}s can be created and used.
"""
from nltk import nonterminals, Proction, parse_cfg
# Create some nonterminals
S, NP, VP, PP = nonterminals('S, NP, VP, PP')
N, V, P, Det = nonterminals('N, V, P, Det')
VP_slash_NP = VP/NP
print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP]
print ' S.symbol() =>', `S.symbol()`
print
print Proction(S, [NP])
# Create some Grammar Proctions
grammar = parse_cfg("""
S -> NP VP
PP -> P NP
NP -> Det N | NP PP
VP -> V NP | VP PP
Det -> 'a' | 'the'
N -> 'dog' | 'cat'
V -> 'chased' | 'sat'
P -> 'on' | 'in'
""")
print 'A Grammar:', `grammar`
print ' grammar.start() =>', `grammar.start()`
print ' grammar.proctions() =>',
# Use string.replace(...) is to line-wrap the output.
print `grammar.proctions()`.replace(',', ',
'+' '*25)
print
print 'Coverage of input words by a grammar:'
-
def cfg_demo():
"""
A demonstration showing how C{ContextFreeGrammar}s can be created and used.
"""
from nltk import nonterminals, Proction, parse_cfg
# Create some nonterminals
S, NP, VP, PP = nonterminals('S, NP, VP, PP')
N, V, P, Det = nonterminals('N, V, P, Det')
VP_slash_NP = VP/NP
print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP]
print ' S.symbol() =>', `S.symbol()`
print Proction(S, [NP])
# Create some Grammar Proctions
grammar = parse_cfg("""
S -> NP VP
PP -> P NP
NP -> Det N | NP PP
VP -> V NP | VP PP
Det -> 'a' | 'the'
N -> 'dog' | 'cat'
V -> 'chased' | 'sat'
P -> 'on' | 'in'
""")
print 'A Grammar:', `grammar`
print ' grammar.start() =>', `grammar.start()`
print ' grammar.proctions() =>',
# Use string.replace(...) is to line-wrap the output.
print `grammar.proctions()`.replace(',', ', '+' '*25)
print 'Coverage of input words by a grammar:'
-
from nltk import nonterminals, Proction, parse_cfg # Create some nonterminals S, NP, VP, PP = nonterminals('S, NP, VP, PP') N, V, P, Det = nonterminals('N, V, P, Det') VP_slash_NP = VP/NP print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP] print ' S.symbol() =>', `S.symbol()` print print Proction(S, [NP]) # Create some Grammar Proctions grammar = parse_cfg(""" S -> NP VP PP -> P NP NP -> Det N | NP PP VP -> V NP | VP PP Det -> 'a' | 'the' N -> 'dog' | 'cat' V -> 'chased' | 'sat' P -> 'on' | 'in' """) print 'A Grammar:', `grammar` print ' grammar.start() =>', `grammar.start()` print ' grammar.proctions() =>', # Use string.replace(...) is to line-wrap the output. print `grammar.proctions()`.replace(',', ', '+' '*25) print print 'Coverage of input words by a grammar:' print grammar.covers(['a','dog']) print grammar.covers(['a','toy']) toy_pcfg1 = parse_pcfg(""" S -> NP VP [1.0] NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15] Det -> 'the' [0.8] | 'my' [0.2] N -> 'man' [0.5] | 'telescope' [0.5] VP -> VP PP [0.1] | V NP [0.7] | V [0.2] V -> 'ate' [0.35] | 'saw' [0.65] PP -> P NP [1.0] P -> 'with' [0.61] | 'under' [0.39] """) toy_pcfg2 = parse_pcfg(""" S -> NP VP [1.0] VP -> V NP [.59] VP -> V [.40] VP -> VP PP [.01] NP -> Det N [.41] NP -> Name [.28] NP -> NP PP [.31] PP -> P NP [1.0] V -> 'saw' [.21] V -> 'ate' [.51] V -> 'ran' [.28] N -> 'boy' [.11] N -> 'cookie' [.12] N -> 'table' [.13] N -> 'telescope' [.14] N -> 'hill' [.5] Name -> 'Jack' [.52] Name -> 'Bob' [.48] P -> 'with' [.61] P -> 'under' [.39] Det -> 'the' [.41] Det -> 'a' [.31] Det -> 'my' [.28] """)
② 为什么用Python做数据分析
为什么用Python做数据分析
原因如下:
1、python大量的库为数据分析提供了完整的工具集
python拥有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科学计算方面十分有优势,尤其是pandas,在处理中型数据方面可以说有着无与伦比的优势,已经成为数据分析中流砥柱的分析工具。
2、比起MATLAB、R语言等其他主要用于数据分析语言,python语言功能更加健全
Python具有强大的编程能力,这种编程语言不同于R或者matlab,python有些非常强大的数据分析能力,并且还可以利用Python进行爬虫,写游戏,以及自动化运维,在这些领域中有着很广泛的应用,这些优点就使得一种技术去解决所有的业务服务问题,这就充分的体现的Python有利于各个业务之间的融合。如果使用Python,能够大大的提高数据分析的效率。
3、python库一直在增加,算法的实现采取的方法更加创新
4、python能很方便的对接其他语言,比如c、java等。
Python最大的优点那就是简单易学。Python代码十分容易被读写,最适合刚刚入门的朋友去学习。我们在处理数据的时候,一般都希望数据能够转化成可运算的数字形式,这样,不管是没学过编程的人还是学过编程的人都能够看懂这个数据。
其实现如今,Python是一个面向世界的编程语言,Python对于如今火热的人工智能也有一定的帮助,这是因为人工智能需要的是即时性,而Python是一种非常简洁的语言,同时有着丰富的数据库以及活跃的社区,这样就能够轻松的提取数据,从而为人工智能做出优质的服务。
通过上面的描述,相信大家已经知道了使用Python做数据分析的优点了。Python语言得益于它的简单方便,使得其在大数据、数据分析以及人工智能方面都有十分明显的存在感,对于数据分析从业者以及想要进入数据分析行业的人来说,简单易学容易上手的优势也是一个优势,所以不管大家是否进入数据分析行业,学习Python是没有坏处的。
Python中文网,大量Python视频教程,欢迎学习!
③ Python函数代码分析题
1、show_category
2、有,有return。
3、break;
4、字典中category键的所有的菜。
5、同4一样通过键返回菜名。
6、加载整个已点的菜,listmenu是列表。
④ 利用python实现数据分析
链接:
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....
⑤ python3有什么比较好的语法分析器
Pycharm, Eclipse,Ipython,其实自带的IDLE shell也可以设置的
⑥ python语法错误
这个应该是字典类型吧,要用大括号{}
⑦ python函数原型定义那行有个箭头是什么语法比如
deff(a)->List[dict]:
print(a)
return[a]
这个不是python语法,-> List[dict]: 这其实是一个注释,告诉你这个函数返回一个由字典组成的list
⑧ Python语法问题
根据经验分析,有可能是缩进问题。因为没看到你的具体报错,我猜测的。
Python自带的idle不太好用,对于缩进有问题有时软件显示不出来,推荐你换个Python编辑器,比如Pycharm或spyder。这些可以看清缩进,避免缩进问题报错。
若不是由于缩进,可以仔细看看一下报错怎么说的,再进一步分析。
⑨ python数据分析怎么使用,都需要学习什么技术
Python是一种面向对象、直译式计算机程序设计语言,由Guido van Rossum于1989年底发明。由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。
Python数据分析,主要需要学习以下内容:
1、Python语法基础
2、Python数据分析扩展包:Numpy、Pandas、Matplotlib等
3、Python爬虫基础(非必须,但可以提升兴趣)
4、Python数据探索及预处理
5、Python机器学习
python的下载和安装环境:难点主要是在环境的安装上,很多小白往往一腔热血但是面对环境安装的时候就泄了气,因为我会用Anaconda为例进行环境的安装,同时我建议初学者不要下载具有IDE功能的集成开发环境,比如Eclipse插件等。
数据类型:python的数据类型比较简单,基本上就可以分为两大类——数值和字符串。
数值:数值是python最基础的数据类型,也是我们赋值给变量时最常用的形式,主要包括整型、布尔型等。
字符串:也就是文本数据,在python中一般用引号来定义,可以通过python进行拼接和重叠,实现文本数据的处理;
索引和切片:索引是有序列每个子元素在序列的位置,切片就是对序列的部分截取。
列表:用中括号表示,可以容纳任何对象元素,包括字符串,而且每个元素都可以变化;
元组:其实就是一个固定的列表,初始化元素的值是绝对不能变化的;
字典:可以理解为现实的字典,通过查找拼音(键)就能找到这个读音的所有字(数值);中
集合:数学上的概念,每个集合中的元素是无序的,不可重复的对象;
数据结构:python的数据结构可以分为四种,列表、元组、字典、集合。
数据分析的目的是从数据里找规律,因此想要掌握python必须要学习一些基础的数理理论,这是成为一个数据分析师必备的能力。对于python来说,其涉及的数理统计学基础主要由算法、统计学、概率论等
sql是python的基础,如果你已经掌握了SQL,那么这一章你就可以直接跳过,那么你就要好好学习这部分的内容,因为sql是入门python的关键基础,同时它也是每个数据分析师必备的技能,主要目的是用sql来进行增删改查等操作,对数据进行筛选。
以上的回答希望对你有所帮助
⑩ 如何用bison和flex写python的语法分析器和词法分析
这个通用的数据结构,实际上是作为web服务层(这一层大家可以认为是类似于PHP服务器或webpy的服务器容器)