python单线程多线程
㈠ 为什么有人说 python 的多线程是鸡肋
因为 Python 中臭名昭着的 GIL。
那么 GIL 是什么?为什么会有 GIL?多线程真的是鸡肋吗? GIL 可以去掉吗?带着这些问题,我们一起往下看,同时需要你有一点点耐心。
多线程是不是鸡肋,我们先做个实验,实验非常简单,就是将数字 “1亿” 递减,减到 0 程序就终止,这个任务如果我们使用单线程来执行,完成时间会是多少?使用多线程又会是多少?show me the code
那么把 GIL 去掉可行吗?
还真有人这么干多,但是结果令人失望,在1999年Greg Stein 和Mark Hammond 两位哥们就创建了一个去掉 GIL 的 Python 分支,在所有可变数据结构上把 GIL 替换为更为细粒度的锁。然而,做过了基准测试之后,去掉GIL的 Python 在单线程条件下执行效率将近慢了2倍。
Python之父表示:基于以上的考虑,去掉GIL没有太大的价值而不必花太多精力。
㈡ python是不是多线程1python是不是多线程2python是不是多线程3
在Python多线程下,每个线程的执行方式:
1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL
可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。
在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过
sys.setcheckinterval 来调整),进行释放。
而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。
那么是不是python的多线程就完全没用了呢?
在这里我们进行分类讨论:
1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。
而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。
请注意:多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低
回到最开始的问题:经常我们会听到老手说:“python下想要充分利用多核CPU,就用多进程”,原因是什么呢?
原因是:每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。
所以在这里说结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率
㈢ python为何多线程报错,单线程没问题
挖,你的csdn悬赏一百分,亏了亏了。
网页链接
上面那个博主文章中的答案应该就能解决,归根结底,这是com组件在初始化时对待单线程和多线程存在区别所致(python默认只初始化单线程的COM组件)。
方便不小心点进来的朋友直接粘贴答案如下:
查了一下,在线程所在文件中加入 import pythoncom
每个进程执行时需要加上一句:pythoncom.CoInitialize()就可以解决。
㈣ python中什么是线程
线程是系统中的名词,Python一般是单线程的,Python的多线程优化很差。
线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。由于线程之间的相互制约,致使线程在运行中呈现出间断性。线程也有就绪、阻塞和运行三种基本状态。就绪状态是指线程具备运行的所有条件,逻辑上可以运行,在等待处理机;运行状态是指线程占有处理机正在运行;阻塞状态是指线程在等待一个事件(如某个信号量),逻辑上不可执行。每一个程序都至少有一个线程,若程序只有一个线程,那就是程序本身。
线程是程序中一个单一的顺序控制流程。进程内有一个相对独立的、可调度的执行单元,是系统独立调度和分派CPU的基本单位指令运行时的程序的调度单位。在单个程序中同时运行多个线程完成不同的工作,称为多线程。
㈤ python多线程中每个线程如果不加休眠时间就会只泡在一个线程上,这该如何处理谢谢
这是三个线程都在跑啊,只是并发的而已
㈥ python的多线程是真的多线程吗
简单地说就是作为可能是仅有的支持多线程的解释型语言(perl的多线程是残疾,PHP没有多线程),Python的多线程是有compromise的,在任意时间只有一个Python解释器在解释Python bytecode。
UPDATE:如评论指出,Ruby也是有thread支持的,而且至少Ruby MRI是有GIL的。
如果你的代码是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有context switch
但是:如果你的代码是IO密集型,多线程可以明显提高效率。例如制作爬虫(我就不明白为什么Python总和爬虫联系在一起…不过也只想起来这个例子…),绝大多数时间爬虫是在等待socket返回数据。这个时候C代码里是有release GIL的,最终结果是某个线程等待IO的时候其他线程可以继续执行。
反过来讲:你就不应该用Python写CPU密集型的代码…效率摆在那里…
如果确实需要在CPU密集型的代码里用concurrent,就去用multiprocessing库。这个库是基于multi process实现了类multi thread的API接口,并且用pickle部分地实现了变量共享。
再加一条,如果你不知道你的代码到底算CPU密集型还是IO密集型,教你个方法:
multiprocessing这个mole有一个mmy的sub mole,它是基于multithread实现了multiprocessing的API。
假设你使用的是multiprocessing的Pool,是使用多进程实现了concurrency
from multiprocessing import Pool
如果把这个代码改成下面这样,就变成多线程实现concurrency
from multiprocessing.mmy import Pool
两种方式都跑一下,哪个速度快用哪个就行了。
UPDATE:
刚刚才发现concurrent.futures这个东西,包含ThreadPoolExecutor和ProcessPoolExecutor,可能比multiprocessing更简单
㈦ Python 多线程效率不高吗
Python效率到底高不高?到底是不是鸡肋?Python由于有全锁局的存在(同一时间只能有一个线程执行),并不能利用多核优势。所以,如果你的多线程进程是CPU密集型的,那多线程并不能带来效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。
虽然CPython的线程库直接封装了系统的原生线程,但CPython整体作为一个进程,同一时间只会有一个获得GIL的线程在跑,其他线程则处于等待状态。这就造成了即使在多核CPU中,多线程也只是做着分时切换而已。
㈧ 既然python解释器是单线程的,还有进行多线程编程的必要吗
有必要,至少能解决很多IO阻塞问题。
能产生IO阻塞的情况很多,比如网络、磁盘,等等。当发生阻塞时,Python是不耗CPU的,此时如果就一个线程就没法处理其他事情了。所以对于含有IO阻塞的环境。多线程至少有机会让你把一个CPU核心跑到100%。
另一个用处来自于Python的C扩展模块。在扩展模块里是可以释放GIL的。但释放GIL期间不应该调用任何Python API。所以,对于一些非常繁重的计算,可以写成C模块,计算前释放GIL,计算后重新申请GIL,并将结果返回给Python。这样就可以让Python这个进程利用更多的CPU资源。每个Python的线程都是OS级别pthread的线程。利用Python来管理这些线程比在C层级操作pthread更方便。
㈨ python 多线程抓取程序是否可比单线程性能有提升
因为抓取程序涉及到读取远程网站页面的操作,这个操作中从发出请求到获得内容是需要等待IO的;多线程程序可以利用这个时间进行其他操作,因此可以提高效率。