python多项式拟合
Ⅰ 如何用python拟合对数函数
scipy的optimize工具箱中有拟合函数可以使用 或者用sm的OSL进行拟合 具体搜一下教程
Ⅱ 用python实现多项式拟合怎么加入正则化
应该是不可以的
import numpy as np
from scipy.optimize import leastsq
import pylab as pl
x = np.arange(1, 17, 1)
y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60])
#第一个拟合,自由度为3
z1 = np.polyfit(x, y, 3)
# 生成多项式对象
p1 = np.poly1d(z1)
print(z1)
print(p1)
# 第二个拟合,自由度为6
z2 = np.polyfit(x, y, 6)
# 生成多项式对象
p2 = np.poly1d(z2)print(z2)print(p2) # 绘制曲线 # 原曲线pl.plot(x, y, 'b^-', label='Origin Line')pl.plot(x, p1(x), 'gv--', label='Poly Fitting Line(deg=3)')pl.plot(x, p2(x), 'r*', label='Poly Fitting Line(deg=6)')pl.axis([0, 18, 0, 18])pl.legend()# Save figurepl.savefig('scipy02.png', dpi=96)
Ⅲ python polyfit函数怎么使用
用polyfit(X,Y,1)得到的拟合函数只能得到a,b,但不能得到线性相关系数R^2。如想要得到其线性相关系数,可以用regress(y,X),其使用格式
[b,bint,r,rint,stats]
=
regress(y,X);
b——拟合系数
bint——b的置信区间
r——残差值
rint——r的置信区间
stats——检验统计量,第一个就是相关系数
例如:
x=[。。。];y=[。。。]
X=[x
ones(n,1)];
%x的行数(列数)
[b,bint,r,rint,stats]
=
regress(y,X);
Ⅳ python中用polyfit拟合出的函数怎么能直接调用
首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)
附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()
Ⅳ Python怎么实现非线性的拟合
import matplotlib.pyplot as ptimport numpy as npfrom scipy.optimize import leastsqfrom pylab import *time = []counts = []for i in open('/some/folder/to/file.txt', 'r'):
segs = i.split()
time.append(float(segs[0]))
counts.append(segs[1])time_array = arange(len(time), dtype=float)counts_array = arange(len(counts))time_array[0:] = time
counts_array[0:] = counts
def model(time_array0, coeffs0):
a = coeffs0[0] + coeffs0[1] * np.exp( - ((time_array0-coeffs0[2])/coeffs0[3])**2 )
b = coeffs0[4] + coeffs0[5] * np.exp( - ((time_array0-coeffs0[6])/coeffs0[7])**2 )
c = a+b return c
Ⅵ 如何用python去非线性拟合一个多变量的幂函数
为什么不用MATLAB,MATLAB的曲线拟合非常完善,也简单易学。
Ⅶ Python 怎么用曲线拟合数据
Python中利用guiqwt进行曲线数据拟合。
示例程序:
Ⅷ 如何 计算 多项式 拟合中的 r2值 python
首先需要两组数,变量和它对应的函数值。 将已有数据插入图表->版式->趋势线->多项式->输入项数->勾选下方“显示公式”。