python怎么自学
python零基础怎么学?如果是纯新手,建议找个老师教,在掌握了基本的要点以后,可以在网上找些例程研究学习。不论是找老师教,还是自学,建议掌握以下一些知识点:
1、编程环境的安装和使用
2、输入输出语句、变量、表达式的理解和使用
3、选择结构、循环结构的理解和使用
4、列表的使用
5、文件的操作
6、函数调用的方法
7、库的安装和使用
编程,其实就是利用特定的语言控制计算机,或者说和计算机进行交流。
一、对于python零基础作为初学者,要掌握以下基础知识就算入门了。
1、编程环境的安装与使用。比如Python的学习一般推荐软件自带的IDLE,简单好用。
2、掌握输入、输入语句的使用。输入语句可以让计算机知道你通过键盘输入了什么,输出语句可以让你知道计算机执行的结果。以输出语句为例:
其中“”里面的内容是原样输出,多个输出项之间用,隔开。
3、掌握运算(包含计算、逻辑)表达式使用。这个主要是用+、-、*、/、()、>、<、>=、<=等符号连接起来的表示计算或者比较的式子,让计算机能做计算机或者判断。
一个是计算表达式,一个是所谓的逻辑表达式。
4、特别要掌握赋值表达式的使用,这个主要是等于号的理解。在计算机编程语言里,等于号一般不表示相等,而是表示赋值。也就是将等号右边的内容记入左边的名字里。
5、理解并熟练使用变量,变量的字面意思就是会变化的量。其实质的作用记忆信息。通过给要记忆的内容取个名字,然后通过这个名字就可以找到记忆的内容。有点类似于数学中的字母表示数。
6、选择结构,这是让计算机具有一定的选择、判断能力的基础。比如我们常见的登录,VIP就要用到选择结构。因为我们把各种情况都列举在程序里了,程序才会有各种变化。
没选择,没变化!变化的根本在于条件。
7、循环结构,这是让计算机具有重复的能力。前提是事件要具有一定的规律性,比如1,3,5,7,9……
如果没有规律,也可能通过列表等方法构造规律。
其实的range()代表范围,三个参数分别表示开始,结束,间隔。不能超过结束,间隔可正可负。
8、文件的读取和写入,这个主要是针对大量的数据处理而言的。
一般来说,掌握这些基本知识就算入门了。
二、高阶的使用
1、在实际编程过程中,经常会碰到一些没有规律的数据,比如:
请找出13,35,21,49,19,42,123,98中所有的偶数。
这里面就涉及到一个问题,这些数多且没有规律,如何处理?这时候就可以祭出列表这一神器了。列表,可以理解成一个货架,每个格子上都有编号,我们只需要报出架子的编号,就可以得到架子上的内容。同理,我们只要说出要放到的架子的编号,不管我们的内容是什么,放过去就行了。
从这个描述我们发现列表分二部分,一部分是有规律的编号,一部分是没有规律的内容。通过这样的组合,我们就可以用列表把没有规律的内容变得有规律 了。
2、随着我们的问题难度的不断加深,第三方库的安装和使用也是必须要掌握的技能。Python功能强大,使用简单主要原因是因为大量的库的存在。
以机器学习算法中大部分都要调用的Numpy库来演示安装方法。
pip install Numpy即可安装成功。
掌握上面的一些知识,Python就算入门了,也欢迎大家留言交流不足之处,碰到具体的问题也欢迎交流。
❷ 零基础学python应该怎么入门
Python相对比较简单,零基础也能学。系统学习的话,一般4-6个月左右能学好。
python是一门语法优美的编程语言,不仅可以作为小工具使用提升我们日常工作效率,也可以单独作为一项高新就业技能!所以学完Python编程之后,只要真的掌握了相关技术,想要找到好的工作还是比较容易的。
建议大家可以从以下三方面来入手:
①先自学一些python书籍
大家可以从书中了解一些基础知识,建立一些编程认知。
但是这样的方式,还是难免会因为没什么基础很快就觉得枯燥了,所以在书籍方面还是建议大家结合视频课程一起来学习,才能更高效一点。
②网上找相关课程
在mooc网学习的是北京理工大学的一门python公开课,整个流程学习下来能够了解一些基础相关,但课程比较浅显,还是感觉有些不系统,也很难靠自学迅速入门。
③报班学习
很多人对网上报班有些排斥,因为难免会觉得会被割韭菜。但是对于零基础的小白学习python编程而言,跟着专业系统化一点的团队一起学习,势必会更省时省力一点的。
毕竟我们没有基础,靠自学又没啥时间去坚持,能有合适的【线上陪伴式】的课程,还是挺值得一试的。建议大家可以先从体验课开始,了解清楚课程含金量,看看往期学员的体验回馈后再报班学习。
Python的学习学习顺序如下:
①Python软件开发基础
②Python软件开发进阶
③Python全栈式WEB工程师
④Python多领域开发
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
❸ 如何系统地自学 Python
是否非常想学好 Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?
幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。
Python 的设计哲学之一就是简单易学,体现在两个方面:
语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。
切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
- 用一种方法,最好是只有一种方法来做一件事。
废话不多说,学会一门语言的捷径只有一个: Getting Started
¶ 起步阶段
任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。
硬知识
“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个 Java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到 Python 中来,因此能够快速掌握 Python 中面向对象的特性。
如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。
下面列出了一些适合初学者入门的教学材料:
廖雪峰的 Python 教程 Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。
笨方法学 Python 这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。
The Hitchhiker’s Guide to Python! 这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。
Python 的哲学:
学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。
必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。
软知识
“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。
对这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7 一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django 什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想圣洁的性能安全通用性健壮性全部满分的解决方案。
很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。
还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。
选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。
自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...
更重要的是,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。
技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?
因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。
起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。
¶ 发展阶段
完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。
没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。
发展阶段的核心任务,就是“跳出 Python,拥抱世界”。
在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。
拿爬虫举例,如果你对计算机网络,HTTP 协议,HTML,文本编码,JSON 一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。
在这个阶段,不可避免要接触大量类库,阅读大量书籍的。
类库方面
“Awesome Python 项目”:vinta/awesome-python · GitHub
这里列出了你在尝试解决各种实际问题时,Python 社区已有的工具型类库,如下图所示:
vinta/awesome-python
你可以按照实际需求,寻找你需要的类库。
至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。
书籍方面
这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:
科学和数据分析:
❖“集体智慧编程”:集体智慧编程 (豆瓣)
❖“数学之美”:数学之美 (豆瓣)
❖“统计学习方法”:统计学习方法 (豆瓣)
❖“Pattern Recognition And Machine Learning”:Pattern Recognition And Machine Learning (豆瓣)
❖“数据科学实战”:数据科学实战 (豆瓣)
❖“数据检索导论”:信息检索导论 (豆瓣)
爬虫:
❖“HTTP 权威指南”:HTTP权威指南 (豆瓣)
Web 网站:
❖“HTML & CSS 设计与构建网站”:HTML & CSS设计与构建网站 (豆瓣)
...
列到这里已经不需要继续了。
聪明的你一定会发现上面的大部分书籍,并不是讲 Python 的书,而更多的是专业知识。
事实上,这里所谓“跳出 Python,拥抱世界”,其实是发现 Python 和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,更多的取决于自己的专业知识。
¶ 深入阶段
这个阶段的你,对 Python 几乎了如指掌,那么你一定知道 Python 是用 C 语言实现的。
可是 Python 对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开 Python 的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。
这里推荐一本书:
“Python 源码剖析”:Python源码剖析 (豆瓣)
这本书把 Python 源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对 C 语言内存模型和指针有着很好的理解。
另外,Python 本身是一门杂糅多种范式的动态语言,也就是说,相对于 C 的过程式、 Haskell 等的函数式、Java 基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在 Python 中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到 Python 语言的根源。
这里推荐一门公开课
“编程范式”:斯坦福大学公开课:编程范式
讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。
值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读 Python 源码也有大有帮助。
Python 的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如 Django、Tornado 等等。在它们的源代码中淘金,也是个不错的选择。
¶ 最后的话
每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人!
希望想学 Python 想学编程的同学,不要犹豫了,看完这篇文章,
Just Getting Started !!!