sparksql查询
‘壹’ SparkAPI中的spark.sql(sql)支持limit查询吗例如select * from tablename limit 1,10。
支持limit的,但不支持limit(2,10),想要分页还得使用类似hive的开窗函数row_number
‘贰’ 基于spark SQL之上的检索与排序对比性能测试
之前做过一年的spark研发,之前在阿里与腾讯也做了很久的hive,所以对这方面比较了解。
第一:其实快多少除了跟spark与hive本身的技术实现外,也跟机器性能,底层操作系统的参数优化息息相关,不能一概而论。
第二:hive 目前应该还是业界的主流,毕竟快与慢很多时候并非是至关重要的,对于一个生产系统来说,更重要的应该是稳定性,spark毕竟还算是比较新兴的事务,快确实快,但是稳定性上距离hive相差甚远。关于spark我们也修复了很多关于内存泄露的BUG,因为您问的是性能,所以不过多介绍(可以跟我要YDB编程指南,里面有我对这些BUG的修正)
第三:关于性能,我测试的可能不够全面,只能在排序与检索过滤上提供我之前的基于YDB的BLOCK sort测试报告供您参考(网络上贴word太费劲,您可以跟我要 word文档)。
排序可以说是很多日志系统的硬指标(如按照时间逆序排序),如果一个大数据系统不能进行排序,基本上是这个系统属于不可用状态,排序算得上是大数据系统的一个“刚需”,无论大数据采用的是hadoop,还是spark,还是impala,hive,总之排序是必不可少的,排序的性能测试也是必不可少的。
有着计算奥运会之称的Sort Benchmark全球排序每年都会举行一次,每年巨头都会在排序上进行巨大的投入,可见排序速度的高低有多么重要!但是对于大多数企业来说,动辄上亿的硬件投入,实在划不来、甚至远远超出了企业的项目预算。相比大数据领域的暴力排序有没有一种更廉价的实现方式?
在这里,我们为大家介绍一种新的廉价排序方法,我们称为blockSort。
500G的数据300亿条数据,只使用4台 16核,32G内存,千兆网卡的虚拟机即可实现 2~15秒的 排序 (可以全表排序,也可以与任意筛选条件筛选后排序)。
一、基本的思想是这样的,如下图所示:
1.将数据按照大小预先划分好,如划分成 大、中、小三个块(block)。
2.如果想找最大的数据,那么只需要在最大的那个块里去找就可以了。
3.这个快还是有层级结构的,如果每个块内的数据量很多,可以到下面的子快内进行继续查找,可以分多个层进行排序。
4.采用这种方法,一个亿万亿级别的数据(如long类型),最坏最坏的极端情况也就进行2048次文件seek就可以筛选到结果。
五、哪些用户适合使用YDB?
1.传统关系型数据,已经无法容纳更多的数据,查询效率严重受到影响的用户。
2.目前在使用SOLR、ES做全文检索,觉得solr与ES提供的分析功能太少,无法完成复杂的业务逻辑,或者数据量变多后SOLR与ES变得不稳定,在掉片与均衡中不断恶性循环,不能自动恢复服务,运维人员需经常半夜起来重启集群的情况。
3.基于对海量数据的分析,但是苦于现有的离线计算平台的速度和响应时间无满足业务要求的用户。
4.需要对用户画像行为类数据做多维定向分析的用户。
5.需要对大量的UGC(User Generate Content)数据进行检索的用户。
6.当你需要在大数据集上面进行快速的,交互式的查询时。
7.当你需要进行数据分析,而不只是简单的键值对存储时。
8.当你想要分析实时产生的数据时。
ps:说了一大堆,说白了最适合的还是踪迹分析因为数据量大,数据还要求实时,查询还要求快。这才是关键。