c语言交叉编译
❶ 交叉编译时提示 对'__C_ctype_b'的未定义引用
出现这种情况的原因,主要是C/C++编译为obj文件的时候并不旅卖需要函数的具体实现,只要有函数的原型即可。但是在链接为可执行文件的时候就必须要具体的实现了。如果错误是未声明的引用,那就是找不到函数的原型,解决办法这里就不细致说了,通常是相关的头文件未包含。
解决办法
指定原因就好办了,既然知道是缺少了函数的喊昌具体实现,那么就给它这个函数的实现就好了。比如上面的例子,是因为缺失了dlopen、dlsym、dlerror、dlclose这些函数的实现,这几个函数是用于加载动态链接库的,编译的时候需要添加-ldl来使用dl库(这是静态库,在系统目录下/usr/lib/i386-linux-gnu/libdl.a、/usr/lib/x86_64-linux-gnu/libdl.a)。
但是看上面编译的时候是有添加-ldl选项的,那么为什么不行呢?
gcc 依赖顺序问题
这个主要的原因是gcc编译的时候,各个文件依赖顺序的问题。
在gcc编译的时候,如果文件a依赖于文件b,那么编译的时候必须把a放前面,b放后面。
例如:在main.c中使用了pthread库相关函数,那么编译的时候必须是main.c在前,-lpthread在后。gcc main.c -lpthread -o a.out。
上面拆渗逗出现问题的原因就是引入库的顺序在前面了,将其放置在后面即可了。
g++ -o spider bloomfilter.o confparser.o crc32.o dso.o hashs.o md5.o qstring.o sha1.o socket.o spider.o threads.o url.o -rdynamic -lpthread -levent -lcrypt -ldl
❷ Ubuntu 嵌入式交叉编译环境搭建
在一种计算机环境中运行的编译程序,能编译出在另外一种环境下运行的代码,我们就称这种编译器支持交叉编译,这个编译过程就叫交叉编译。简单地说,就是在一个平台上生成另一个平台上的可执行代码,而这种工具就是交叉编译器(cross compiler)。
安装前的絮叨,首先简单介绍一下,所谓的搭建交叉编译环境,即安装、配置交银丛知叉编译工具链。在该环境下编译出嵌入式Linux系统所需的操作系统、应用程序等,然后再上传到目标机上。 交叉编译工具链是为了编译、链接、处理和调试跨平台体系结构的程序代码。对于交叉开发的工具链来说,在文件名称上加了一个前缀,用来区别本地的工具链。例如,arm-linux-表示是对arm的交叉编译工具链;arm-linux-gcc表示是使用gcc的编译器。除了体系结构相关的编译选项以外,其使用方法与Linux主机上的gcc相同,所以Linux编程技术对于嵌入式同样适用。不过,并不是任何一个版本拿来都能用,各种软件包往往存在版本匹配问题。例如,编译内核时需要使用arm-linux-gcc-4.3.3版本的交叉编译工具链,而使用arm-linux-gcc-3.4.1的交叉编译工具链,则会导致编译失败。 那么gcc和arm-linux-gcc的区别是什么呢?区别就是gcc是linux下的C语言编译器,编译出来的程序在本地执行,而arm-linux-gcc用来在linux下跨平台的C语言编译器,编译出来的程序在目标机(如ARM平台)上执行,嵌入式开发应使用嵌入式交叉编译工具链。
将压缩包arm-linux-gcc-4.4.3.tar.gz存放在一个目录下,这个目录就是你等会解压缩的目录,以后这个目录就不能随便删掉了,我的存放路径是 /home/song/software,如下图,记住这个路径,等会还会用到。
使用tar命令:tar zxvf arm-gcc-4.4.3.tar.gz将software文件夹下的arm-linux-gcc-4.4.3.tar.gz解压缩安装到当前目录下如下图
通过下图可以看锋消到解压成功了,并且解压后的文件存放在了/home/song/software/opt/FriendlyARM/toolschain/4.4.3文件夹下,如下图所示,这个存放路径可得记住,如下图
接下来配置系统环境变量,把交叉编译工具链的路径添加到环境变量PATH中去,这样就可以在任何目录下使用这些工具。记下上一步中的安装路径,使用命令:vim /etc/profile 编辑profile文件,添加环境变量。
在profile中最后一行添加:export PATH=$PATH:/home/song/software/opt/FriendlyARM/toolschain/4.4.3/bin这个路径就是那个bin目录所在的路径,可能你的不一样,按照你实际的目录填就可以了,如下图32行, 编写完退出并保存
使用命令:source /etc/profile 使环境变量生效
在终端上输入命令arm-linux再按Tab键,可以看到下图,说明环境变量设置成功了
使用命令:arm-linux-gcc -v 会出现下面的错误提示:/home/song/software/opt/FriendlyARM/toolschain/4.4.3/bin/arm-linux-gcc: 15: exec: /home/song/software/opt/FriendlyARM/toolschain/4.4.3/bin/.arm-none-linux-gnueabi-gcc: not found
意思是出现这种问题的原因是由于Ubuntu12.04用的是64位的,解决方法就是使用命令:sudo apt-get install ia32-libs 装一些32位的库。
待安装完32位的库之后,再使郑镇用命令:arm-linux-gcc -v,这一次就成功了,如下图
验证,编译一个hello.c文件
使用命令:arm-linux-gcc hello.c -o hello 看是否编译成功 可见成功生成了二进制文件。
总结:其实在安装过程中,会出现各种各样的错误,一般就是库文件安装不完整,大家可以把错误信息直接复制,到网上搜索一下,一般都能解决,这里希望大家在学习Linux时多一点耐心。
❸ 如何使用CMake进行交叉编译
cmake交叉编译配置
很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译。即在你host宿主机上要生成target目标机的程序。里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等,我今天仅仅简单介绍下相关CMake在面对交叉编译的时候,需要做的一些准备工作。
CMake给交叉编译预留了一个很好的变量CMAKE_TOOLCHAIN_FILE,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括C_COMPILER,CXX_COMPILER,如果用Qt的话需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的话需要更改的BOOST_ROOT(具体查看相关Findxxx.cmake里面指定的路径)。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。
toolChain脚本中设置的几个重要变量
1.CMAKE_SYSTEM_NAME:
即你目标机target所在的操作系统名称,比如ARM或者Linux你就需要写"Linux",如果Windows平台你就写"Windows",如果你的嵌入式平台没有相关OS你即需要写成"Generic",只有当CMAKE_SYSTEM_NAME这个变量被设置了,CMake才认为此时正在交叉编译,它会额外设置一个变量CMAKE_CROSSCOMPILING为TRUE.
2. CMAKE_C_COMPILER:
顾名思义,即C语言编译器,这里可以将变量设置成完整路径或者文件名,设置成完整路径有一个好处就是CMake会去这个路径下去寻找编译相关的其他工具比如linker,binutils等,如果你写的文件名带有arm-elf等等前缀,CMake会识别到并且去寻找相关的交叉编译器。
3. CMAKE_CXX_COMPILER:
同上,此时代表的是C++编译器。
4. CMAKE_FIND_ROOT_PATH:
指定了一个或者多个优先于其他搜索路径的搜索路径。比如你设置了/opt/arm/,所有的Find_xxx.cmake都会优先根据这个路径下的/usr/lib,/lib等进行查找,然后才会去你自己的/usr/lib和/lib进行查找,如果你有一些库是不被包含在/opt/arm里面的,你也可以显示指定多个值给CMAKE_FIND_ROOT_PATH,比如
set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)
该变量能够有效地重新定位在给定位置下进行搜索的根路径。该变量默认为空。当使用交叉编译时,该变量十分有用:用该变量指向目标环境的根目录,然后CMake将会在那里查找。
5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:
对FIND_PROGRAM()起作用,有三种取值,NEVER,ONLY,BOTH,第一个表示不在你CMAKE_FIND_ROOT_PATH下进行查找,第二个表示只在这个路径下查找,第三个表示先查找这个路径,再查找全局路径,对于这个变量来说,一般都是调用宿主机的程序,所以一般都设置成NEVER
6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:
对FIND_LIBRARY()起作用,表示在链接的时候的库的相关选项,因此这里需要设置成ONLY来保证我们的库是在交叉环境中找的.
7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:
对FIND_PATH()和FIND_FILE()起作用,一般来说也是ONLY,如果你想改变,一般也是在相关的FIND命令中增加option来改变局部设置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH
8. BOOST_ROOT:
对于需要boost库的用户来说,相关的boost库路径配置也需要设置,因此这里的路径即ARM下的boost路径,里面有include和lib。
9. QT_QMAKE_EXECUTABLE:
对于Qt用户来说,需要更改相关的qmake命令切换成嵌入式版本,因此这里需要指定成相应的qmake路径(指定到qmake本身)
toolChain demo
# this is required
SET(CMAKE_SYSTEM_NAME Linux)
# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)
# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)
# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)
这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。
❹ riscv-gnu-toolchain 交叉编译器如何构建
探索RISC-V架构的GNU工具链构建之旅要构建RISC-V架构的GNU工具链,你需要精心配置和安装一系列关键组件。首先,确保你的系统已安装必要的依赖工具,包括 sudo apt-get install git autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf patchutils bc libexpat-dev libglib2.0-dev ninja-build zlib1g-dev pkg-config libboost-all-dev libtool libssl-dev libpixman-1-dev libpython-dev virtualenv libmount-dev libsdl2-dev。
然后,开始下载RISC-V工具链的核心组件:
1. 获取RISC-V编译器基础库
从Gitee克隆riscv-gnu-toolchain的主分支:
git clone https://gitee.com/mirrors/riscv-gnu-toolchain
接着,分别克隆RISC-V的C编译器(riscv-gcc)配孙、测试框架(riscv-dejagnu)、GNU C库(riscv-glibc)以及轻量级嵌入式库(riscv-newlib):
git clone -b riscv-gcc-10.2.0 https://gitee.com/mirrors/riscv-gcc
git clone https://gitee.com/mirrors/riscv-dejagnu
git clone -b riscv-glibc-2.29 https://gitee.com/mirrors/riscv-glibc
git clone https://gitee.com/mirrors/riscv-newlib
2. 调试器的加入
为了调试,还需下载RISC-V版本的GDB:
git clone -b fsf-gdb-10.1-with-sim https://gitee.com/mirrors/riscv-binutils-gdb riscv-gdb
接下来,进入构建过程:
- 配置工具链
在终端创建一个名为"build"的目录,然后切换到该目录,执行以下配置命令:
cd build
../configure --prefix=/opt/riscv/gcc --enable-multilib --target=riscv64-multlib-elf
这个配置将工具链安装到"/opt/riscv/gcc",需要超级用户权限,所以请确保使用sudo。
- 编译与安装
使用多线程(-j8)加速编译过程:
sudo make -j8
编译完成后,工具链将自动安装到指定目录,可以通过验证版本信息来确认安装是否成功:
cd /opt/riscv/gcc/bin
riscv64-unknown-elf-gcc -v
通过以上步骤,你已成功构建饥卖前了RISC-V架构的GNU工具链,现在你可以在RISC-V平台上愉快地进行C语言编译和调试了。这个工具链不仅包含了C编译器,还涵盖了测试框架和必要的库烂清支持,为RISC-V开发者提供了强大的开发环境。