当前位置:首页 » 编程语言 » c语言的遗传算法

c语言的遗传算法

发布时间: 2024-12-14 14:10:50

① 遗传算法c语言实现

一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.e,目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

/**************************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the */
/* fitness of an indivial is the same as the value of the */
/* objective function */
/**************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Change any of these parameters to match your needs */

#define POPSIZE 50 /* population size */
#define MAXGENS 1000 /* max. number of generations */
#define NVARS 3 /* no. of problem variables */
#define PXOVER 0.8 /* probability of crossover */
#define PMUTATION 0.15 /* probability of mutation */
#define TRUE 1
#define FALSE 0

int generation; /* current generation no. */
int cur_best; /* best indivial */
FILE *galog; /* an output file */

struct genotype /* genotype (GT), a member of the population */
{
double gene[NVARS]; /* a string of variables */
double fitness; /* GT's fitness */
double upper[NVARS]; /* GT's variables upper bound */
double lower[NVARS]; /* GT's variables lower bound */
double rfitness; /* relative fitness */
double cfitness; /* cumulative fitness */
};

struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
/* replaces the */
/* old generation */

/* Declaration of proceres used by this genetic algorithm */

void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);

/***************************************************************/
/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) */
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file `gadata.txt'. It randomly generates values */
/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file `gadata.txt' is */
/* var1_lower_bound var1_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/

void initialize(void)
{
FILE *infile;
int i, j;
double lbound, ubound;

if ((infile = fopen("gadata.txt","r"))==NULL)
{
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}

/* initialize variables within the bounds */

for (i = 0; i < NVARS; i++)
{
fscanf(infile, "%lf",&lbound);
fscanf(infile, "%lf",&ubound);

for (j = 0; j < POPSIZE; j++)
{
population[j].fitness = 0;
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i],
population[j].upper[i]);
}
}

fclose(infile);
}

/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/

double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
}

/*************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1]^2-x[1]*x[2]+x[3] */
/*************************************************************/

void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];

for (mem = 0; mem < POPSIZE; mem++)
{
for (i = 0; i < NVARS; i++)
x[i+1] = population[mem].gene[i];

population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
}
}

/***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */
/* the array Population holds a of the best indivial */
/***************************************************************/

void keep_the_best()
{
int mem;
int i;
cur_best = 0; /* stores the index of the best indivial */

for (mem = 0; mem < POPSIZE; mem++)
{
if (population[mem].fitness > population[POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
}
}
/* once the best member in the population is found, the genes */
for (i = 0; i < NVARS; i++)
population[POPSIZE].gene[i] = population[cur_best].gene[i];
}

/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */
/* member of the current population */
/****************************************************************/

void elitist()
{
int i;
double best, worst; /* best and worst fitness values */
int best_mem, worst_mem; /* indexes of the best and worst member */

best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i < POPSIZE - 1; ++i)
{
if(population[i].fitness > population[i+1].fitness)
{
if (population[i].fitness >= best)
{
best = population[i].fitness;
best_mem = i;
}
if (population[i+1].fitness <= worst)
{
worst = population[i+1].fitness;
worst_mem = i + 1;
}
}
else
{
if (population[i].fitness <= worst)
{
worst = population[i].fitness;
worst_mem = i;
}
if (population[i+1].fitness >= best)
{
best = population[i+1].fitness;
best_mem = i + 1;
}
}
}
/* if best indivial from the new population is better than */
/* the best indivial from the previous population, then */
/* the best from the new population; else replace the */
/* worst indivial from the current population with the */
/* best one from the previous generation */

if (best >= population[POPSIZE].fitness)
{
for (i = 0; i < NVARS; i++)
population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness;
}
else
{
for (i = 0; i < NVARS; i++)
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
}
}
/**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */
/**************************************************************/

void select(void)
{
int mem, i, j, k;
double sum = 0;
double p;

/* find total fitness of the population */
for (mem = 0; mem < POPSIZE; mem++)
{
sum += population[mem].fitness;
}

/* calculate relative fitness */
for (mem = 0; mem < POPSIZE; mem++)
{
population[mem].rfitness = population[mem].fitness/sum;
}
population[0].cfitness = population[0].rfitness;

/* calculate cumulative fitness */
for (mem = 1; mem < POPSIZE; mem++)
{
population[mem].cfitness = population[mem-1].cfitness +
population[mem].rfitness;
}

/* finally select survivors using cumulative fitness. */

for (i = 0; i < POPSIZE; i++)
{
p = rand()%1000/1000.0;
if (p < population[0].cfitness)
newpopulation[i] = population[0];
else
{
for (j = 0; j < POPSIZE;j++)
if (p >= population[j].cfitness &&
p<population[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}
/* once a new population is created, it back */

for (i = 0; i < POPSIZE; i++)
population[i] = newpopulation[i];
}

/***************************************************************/
/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
/***************************************************************/

void crossover(void)
{
int i, mem, one;
int first = 0; /* count of the number of members chosen */
double x;

for (mem = 0; mem < POPSIZE; ++mem)
{
x = rand()%1000/1000.0;
if (x < PXOVER)
{
++first;
if (first % 2 == 0)
Xover(one, mem);
else
one = mem;
}
}
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/

void Xover(int one, int two)
{
int i;
int point; /* crossover point */

/* select crossover point */
if(NVARS > 1)
{
if(NVARS == 2)
point = 1;
else
point = (rand() % (NVARS - 1)) + 1;

for (i = 0; i < point; i++)
swap(&population[one].gene[i], &population[two].gene[i]);

}
}

/*************************************************************/
/* Swap: A swap procere that helps in swapping 2 variables */
/*************************************************************/

void swap(double *x, double *y)
{
double temp;

temp = *x;
*x = *y;
*y = temp;

}

/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/

void mutate(void)
{
int i, j;
double lbound, hbound;
double x;

for (i = 0; i < POPSIZE; i++)
for (j = 0; j < NVARS; j++)
{
x = rand()%1000/1000.0;
if (x < PMUTATION)
{
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);
}
}
}

/***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* mped into the output file are separated by commas */
/***************************************************************/
。。。。。
代码太多 你到下面呢个网站看看吧

void main(void)
{
int i;

if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation = 0;

fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");

initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
generation++;
select();
crossover();
mutate();
report();
evaluate();
elitist();
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");

for (i = 0; i < NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}

② c语言遗传算法编码多个变量怎么编码

采用位域表示方法,可以节省存储,又能方便访问和操作。
structbs{
unsignedv0:3;
unsignedv1:3;
unsignedv2:3;
......
unsignedv31:3;
}data;

每个变量只需要三个bit,32个变量需要:32*3/8=12个字节,效率非常高。这里v0~v31也可以取更有意义的名字。

③ 求遗传算法(GA)C语言代码

.----来个例子,大家好理解..--
基于遗传算法的人工生命模拟
#include<stdio.h>
#include<stdlib.h>
#include<graphics.h>
#include<math.h>
#include<time.h>
#include<string.h>
#include "graph.c"
/* 宏定义 */
#define TL1 20 /* 植物性食物限制时间 */
#define TL2 5 /* 动物性食物限制时间 */
#define NEWFOODS 3 /* 植物性食物每代生成数目 */
#define MUTATION 0.05 /* 变异概率 */
#define G_LENGTH 32 /* 个体染色体长度 */
#define MAX_POP 100 /* 个体总数的最大值 */
#define MAX_FOOD 100 /* 食物总数的最大值 */
#define MAX_WX 60 /* 虚拟环境的长度最大值 */
#define MAX_WY 32 /* 虚拟环境的宽度最大值 */
#define SX1 330 /* 虚拟环境图左上角点x坐标 */
#define SY1 40 /* 虚拟环境图左上角点y坐标 */
#define GX 360 /* 个体数进化图形窗口的左上角点X坐标 */
#define GY 257 /* 个体数进化图形窗口的左上角点Y坐标 */
#define GXR 250 /* 个体数进化图形窗口的长度 */
#define GYR 100 /* 个体数进化图形窗口的宽度 */
#define GSTEP 2 /* 个体数进化图形窗口的X方向步长 */
#define R_LIFE 0.05 /* 初期产生生物数的环境比率 */
#define R_FOOD 0.02 /* 初期产生食物数的环境比率 */
#define SL_MIN 10 /* 个体寿命最小值 */
/* 全局变量 */
unsigned char gene[MAX_POP][G_LENGTH]; /* 遗传基因 */
unsigned char iflg[MAX_POP]; /* 个体死活状态标志变量 */

④ c语言中遗传算法的种群的适应度是什么

种群适应度就是演化的目标啊,比如说01背包问题,一个背包中所放物品的价值就是适应度,通过不断的变异交叉,适应度会发生改变,每次只选出适应度更高的个体就好了

热点内容
我的世界国际版战争生存服务器 发布:2024-12-14 16:44:56 浏览:856
php网站怎么部署到服务器 发布:2024-12-14 16:11:51 浏览:662
冠道买哪个配置最划算2020 发布:2024-12-14 16:06:39 浏览:943
uc怎么缓存视频 发布:2024-12-14 16:00:57 浏览:720
hbase算法 发布:2024-12-14 15:59:06 浏览:411
c语言100以内奇数 发布:2024-12-14 15:56:08 浏览:123
现状数据库 发布:2024-12-14 15:55:23 浏览:268
如何使用服务器ip地址 发布:2024-12-14 15:42:12 浏览:749
电脑浏览器打开显示代理服务器 发布:2024-12-14 15:32:58 浏览:655
电脑我的世界如何进ec服务器 发布:2024-12-14 15:27:50 浏览:864