当前位置:首页 » 编程语言 » 支持向量机python代码

支持向量机python代码

发布时间: 2024-10-06 14:38:06

⑴ 什么是python的scikit-learn

Scikit-learn是针对Python编程语言的免费软件机器学习库,具有各种分类、回归和聚类算法,包含支持向量机、随机森林、梯度提升,K均值和DBSCAN,并且旨在与Python数值科学图书馆Numpy和Scipy。
Scikit-learn项目始于Scikit.learn,这是David Cournapeau的Google Summer of Code项目。它的名称源于它是Scikit的概念,它是Scikit的独立开发和分布式第三方扩展,原始代码库后来被其他开发人员重写。2010年费边Pedregosa,盖尔Varoquaux,亚历山大Gramfort和Vincent米歇尔,全部由法国国家信息与自动化研究所的罗屈昂库尔,法国,把该项目的领导和做出的首次公开发行在二月一日2010在各种scikits中,scikit-learn以及scikit-image在2012年11月被描述为维护良好且受欢迎 。 Scikit-learn是GitHub上最受欢迎的机器学习库之一。
Scikit-learn主要是用Python编写的,并且广泛使用Numpy进行高性能的线性代数和数组运算。此外,用cython编写了一些核心算法来提高性能,支持向量机由围绕LIBSVM的cython包装器实现;逻辑回归和线性支持向量机的相似包装围绕LIBLINEAR。这种情况下,可能无法使用Python扩展这些方法。
Scikit-learn还与许多其他Python库很好地集成在一起,比如matplotlib和plotly用于绘图、numpy用于数组矢量化、pandas数据帧、scipy等。

⑵ 求python多元支持向量机多元回归模型最后预测结果导出代码、测试集与真实值R2以及对比图代码

这是一个多元支持向量机回归的模型,以下是一个参考的实现代码:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模拟数据
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割数据
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型训练
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 预测结果
pred_y = model.predict(test_X)# 计算R2r2 = r2_score(test_y, pred_y)
# 对比图
plt.scatter(test_X, test_y, color='darkorange', label='data'指敏)
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代码将数据分为训练数据和测试数据,使用SVR模型对训练唯配枝数据进行训练,然后对测试数据进行预测。计算预测结果与真实值的R2,最后卖逗将结果画出对比图,以评估模型的效果。

⑶ 求python支持向量机多元回归预测代码

这是一段用 Python 来实现 SVM 多元回归预测的代码示例:
# 导入相关核胡库
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据集
X, y = datasets.load_boston(return_X_y=True)
# 将数据集拆分为训练集和测试改塌拦集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建SVM多元回归模型
reg = SVR(C=1.0, epsilon=0.2)
# 训练模型
reg.fit(X_train, y_train)
# 预测结果
y_pred = reg.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
在这段代码中,首先导入了相关的库,包括 SVR 函数衫仔、train_test_split 函数和 mean_squared_error 函数。然后,使用 load_boston 函数加载数据集,并将数据集分为训练集和测试集。接着,使用 SVR 函数创建了一个 SVM 多元回归模型,并使用 fit 函数对模型进行训练。最后,使用 predict 函数进行预测,并使用 mean_squared_error 函数计算均方误差。
需要注意的是,这仅仅是一个示例代码,在实际应用中,可能需要根据项目的需求进行更改,例如使用不同的超参数

⑷ 支持向量机—从推导到python手写

笔者比较懒能截图的地方都截图了。

支持向量机分为三类:
(1)线性可分支持向量机,样本线性可分,可通过硬间隔最大化训练一个分类器。
(2)线性支持向量机,样本基本线性可分,可通过软间隔最大化训练一个分类器。
(3)非线性支持向量机,样本线性不可分,可通过核函数和软间隔最森闹大化训练一个分类器。
上面最不好理解的恐怕就是硬间隔和软间隔了,
说白了硬间隔就是说存在这么一个平面,可以把样本完全正确无误的分开,当然这是一种极理想的情况,现实中不存在,所以就有了软间隔。
软间隔说的是,不存在一个平面可以把样本完全正确无误的分开,因此呢允许一些样本被分错,怎么做呢就是加入松弛变量,因为希望分错的样本越小越好,因此松弛变量也有约束条件。加入松弛变量后,问题就变为线性可分了,因为是每一个样本都线性可分,因此松弛变量是针对样本的,每一个样本都对应一个不同的松弛变量。

其实感知机说白了就是找到一条直线把样本点分开,就是上方都是一类,下方是另一类。当然完全分开是好事,往往是不能完全分开的,因此就存在一个损失函数,就是误分类点到这个平面的距离最短:

这里啰嗦一句,误分类点y*(wx+b)<0,所以加个负号在前边。
一般情况下||w||都是可以缩放,那么我们把它缩放到1,最后的目标函数就变成了

间隔就是距离,我们假设分离超平面为 ,那么样本点到此毁罩这个平面的距离可以记为 。我们都知道通过感知机划分的点,超平面上方的点 ,下方的点 ,然后通过判断 的值与y的符号是否一致来判断分类是否正确。根据这个思路函数间隔定义为:

支持向量的定义来源于几何间隔,几何间隔最直接的解释是离分隔超平面最近点的距离,其他任何点到平面的距离都大于这个值,所以几何间隔就是支持向量。然后呢同样道理,w和b是可以缩放的,所以定义支持向量满足如下条件:

再通俗一点说余森,支持向量是一些点,这些点到分隔平面的距离最近,为了便于表示,把他们进行一下缩放计算,让他们满足了wx+b=+-1.

核函数是支持向量机的核心概念之一,它存在的目的就是将维度转换之后的计算简化,达到减少计算量的目的。我们都知道支持向量机求的是间距最大化,通常情况下我们求得的alpha都等于0,因此支持向量决定了间距最大化程度。
核函数的形式是这样的

其中x(i)和x(j)都是向量,他们两个相乘就是向量内积,相乘得到一个数。刚才说了目标函数一般只和支持向量有关,因此在做核函数计算之前,实际就是选择的支持向量进行计算。

这个写完下面得再补充

我们知道了支持向量的概念,那么支持向量机的目标函数是要使这两个支持向量之间的距离尽可能的远,因为这样才能更好地把样本点分开,当然支持向量也要满足最基本的约束条件,那就是分类正确,还有就是其他点到分隔平面的距离要大于等于支持向量到分隔平面的距离。

这种凸优化问题都可以通过拉格朗日算子进行优化,就是把约束条件通过拉格朗日系数放到目标函数上。这部分基础知识,就是拉格朗日算法可以将等式约束和不等式约束都加到目标函数上,完成求解问题的转换,但是要满足一些约束条件,也就是我们后边要说的kkt条件。
这里有个细节就是转换时候的加减号问题,这个和目标函数还有约束的正负号有关。一般这么理解,就是求最小化问题时候,如果约束是大于0的,那么拉个朗日算子可以减到这一部分,这样一来目标函数只能越来越小,最优解就是约束为0的时候,这个时候和没有约束的等价,再求最小就是原问题了。

这里是最小化问题,直接减掉这部分约束,然后后半部分永远大于等于0所以这个式子的值是要小于原来目标函数值的。我们知道当x满足原问题的约束条件的时候,最大化L就等于那个原目标函数。所以我们可以把这个问题转化为:

把它带回去原来的目标函数中,整理一下。

这个时候只要求最优的α,就可以求出w和b了。我们上边做了那么一堆转换,这个过程要满足一个叫做kkt条件的东西,其实这个东西就是把一堆约束条件整理到一起。
(1)原有问题的可行性,即h(x )=0,g(x )<0
放到这里就是:

SMO算法的核心思想是求出最优化的α,然后根据之前推导得到的w,b,α之间的关系计算得到w和b,最后的计算公式是:

现在的问题就是怎么求α了。
SMO算法总共分两部分,一部分是求解两个α的二次规划算法,另一部分是选择两个α的启发式算法。
先说这个选择α的启发式算法部分:大神可以证明优先优化违反kkt条件的α可以最快获得最优解,至于咋证明的,就先不看了。

在讲支持向量机的求解算法时候,直接给出了核函数K,那么怎么去理解核函数呢。核函数的作用是解决样本点在高维空间的内积运算问题,怎么理解呢,通常的分类问题都是有很多个特征的,然后为了达到现线性可分,又会从低维映射到高维,样本量再一多计算量非常大,因此先通过函数进行一个转换,减少乘法的计算量。
要理解核函数,先理解内积运算,内积运算实际是两个向量,对应位置相乘加和,比如我有x1 = [v1,v2], x2=[w1,w2],那么x1和x2的内积计算方法就是:v1w1+v2w2。
如果上面那种情况线性不可分,需要到高维进行映射,让数据变得线性可分,然后数据变为五维的,即v1 2+v2 2+v1+v2+v1v2,然后再进行一次内积计算,数据变为 。
稍作变换,可以变为 ,形式展开和上边那个长式子差不多,然后其实可以映射内积相乘的情况,所以可以进行核函数的变化。
问题在于,当你需要显式的写出来映射形式的时候,在维度很高的时候,需要计算的量太大,比如x1有三个维度,再进行映射就有19维度了,计算很复杂。如果用核函数,还是在原来低维度进行运算,既有相似的效果(映射到高维),又低运算量,这就是核函数的作用了。
核函数的种类:

这部分的核心在于SMO算法的编写。有待补充。

⑸ 常用Python机器学习库有哪些

Python作为一门理想的集成语言,将各种技术绑定在一起,除了为用户提供更方便的功能之外,还是一个理想的粘合平台,在开发人员与外部库的低层次集成人员之间搭建连接,以便用C、C++实现更高效的算法。
使用Python编程可以快速迁移代码并进行改动,无须花费过多的精力在修改代码与代码规范上。开发者在Python中封装了很多优秀的依赖库,可以直接拿来使用,常见的机器学习库如下:
1、Scikit-Learn
Scikit-Learn基于Numpy和Scipy,是专门为机器学习建造的一个Python模块,提供了大量用于数据挖掘和分析的工具,包括数据预处理、交叉验证、算法与可视化算法等一系列接口。
Scikit-Learn基本功能可分为六个部分:分类、回归、聚类、数据降维、模型选择、数据预处理。其中集成了大量分类、回归、聚类功能,包括支持向量机、逻辑回归、随机森林、朴素贝叶斯等。
2、Orange3
Orange3是一个基于组件的数据挖掘和机器学习软件套装,支持Python进行脚本开发。它包含一系列的数据可视化、检索、预处理和建模技术,具有一个良好的用户界面,同时也可以作为Python的一个模块使用。
用户可通过数据可视化进行数据分析,包含统计分布图、柱状图、散点图,以及更深层次的决策树、分层聚簇、热点图、MDS等,并可使用它自带的各类附加功能组件进行NLP、文本挖掘、构建网络分析等。
3、XGBoost
XGBoost是专注于梯度提升算法的机器学习函数库,因其优良的学习效果及高效的训练速度而获得广泛的关注。XGBoost支持并行处理,比起同样实现了梯度提升算法的Scikit-Learn库,其性能提升10倍以上。XGBoost可以处理回归、分类和排序等多种任务。
4、NuPIC
NuPIC是专注于时间序列的一个机器学习平台,其核心算法为HTM算法,相比于深度学习,其更为接近人类大脑的运行结构。HTM算法的理论依据主要是人脑中处理高级认知功能的新皮质部分的运行原理。NuPIC可用于预测以及异常检测,使用面非常广,仅要求输入时间序列即可。
5、Milk
Milk是Python中的一个机器学习工具包。Milk注重提升运行速度与降低内存占用,因此大部分对性能敏感的代码都是使用C++编写的,为了便利性在此基础上提供Python接口。重点提供监督分类方法,如SVMs、KNN、随机森林和决策树等。

热点内容
取消win10开机密码怎么设置 发布:2024-11-24 15:26:03 浏览:796
编译原理for循环三地址码 发布:2024-11-24 15:16:44 浏览:201
php2048 发布:2024-11-24 15:14:49 浏览:894
php旋转图片 发布:2024-11-24 15:03:48 浏览:534
提新车如何查看车辆配置 发布:2024-11-24 14:58:40 浏览:889
编译期多态与运行期多态 发布:2024-11-24 14:47:07 浏览:580
sqlserver连接工具 发布:2024-11-24 14:24:51 浏览:293
怎么排除安卓软件不兼容 发布:2024-11-24 14:24:18 浏览:526
怎么让Win10运行安卓 发布:2024-11-24 14:23:12 浏览:324
什么是设置服务器怎么弄 发布:2024-11-24 14:01:59 浏览:334