当前位置:首页 » 编程语言 » 调度算法c语言

调度算法c语言

发布时间: 2024-09-23 15:17:42

‘壹’ 时间片轮转算法和优先级调度算法 c语言模拟实现

一、目的和要求
进程调度是处理机管理的核心内容。本实验要求用高级语言编写模拟进程调度程序,以便加深理解有关进程控制快、进程队列等概念,并体会和了解优先数算法和时间片轮转算法的具体实施办法。
二、实验内容
1.设计进程控制块PCB的结构,通常应包括如下信息:
进程名、进程优先数(或轮转时间片数)、进程已占用的CPU时间、进程到完成还需要的时间、进程的状态、当前队列指针等。
2.编写两种调度算法程序:
优先数调度算法程序
循环轮转调度算法程序
3.按要求输出结果。
三、提示和说明
分别用两种调度算法对伍个进程进行调度。每个进程可有三种状态;执行状态(RUN)、就绪状态(READY,包括等待状态)和完成状态(FINISH),并假定初始状态为就绪状态。
(一)进程控制块结构如下:
NAME——进程标示符
PRIO/ROUND——进程优先数/进程每次轮转的时间片数(设为常数2)
CPUTIME——进程累计占用CPU的时间片数
NEEDTIME——进程到完成还需要的时间片数
STATE——进程状态
NEXT——链指针
注:
1.为了便于处理,程序中进程的的运行时间以时间片为单位进行计算;
2.各进程的优先数或轮转时间片数,以及进程运行时间片数的初值,均由用户在程序运行时给定。
(二)进程的就绪态和等待态均为链表结构,共有四个指针如下:
RUN——当前运行进程指针
READY——就需队列头指针
TAIL——就需队列尾指针
FINISH——完成队列头指针
(三)程序说明
1. 在优先数算法中,进程优先数的初值设为:
50-NEEDTIME
每执行一次,优先数减1,CPU时间片数加1,进程还需要的时间片数减1。
在轮转法中,采用固定时间片单位(两个时间片为一个单位),进程每轮转一次,CPU时间片数加2,进程还需要的时间片数减2,并退出CPU,排到就绪队列尾,等待下一次调度。
2. 程序的模块结构提示如下:
整个程序可由主程序和如下7个过程组成:
(1)INSERT1——在优先数算法中,将尚未完成的PCB按优先数顺序插入到就绪队列中;
(2)INSERT2——在轮转法中,将执行了一个时间片单位(为2),但尚未完成的进程的PCB,插到就绪队列的队尾;
(3)FIRSTIN——调度就绪队列的第一个进程投入运行;
(4)PRINT——显示每执行一次后所有进程的状态及有关信息。
(5)CREATE——创建新进程,并将它的PCB插入就绪队列;
(6)PRISCH——按优先数算法调度进程;
(7)ROUNDSCH——按时间片轮转法调度进程。
主程序定义PCB结构和其他有关变量。
(四)运行和显示
程序开始运行后,首先提示:请用户选择算法,输入进程名和相应的NEEDTIME值。
每次显示结果均为如下5个字段:
name cputime needtime priority state
注:
1.在state字段中,"R"代表执行态,"W"代表就绪(等待)态,"F"代表完成态。
2.应先显示"R"态的,再显示"W"态的,再显示"F"态的。
3.在"W"态中,以优先数高低或轮转顺序排队;在"F"态中,以完成先后顺序排队。

view plain to clipboardprint?
/*
操作系统实验之时间片轮转算法和优先级调度算法
By Visual C++ 6.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct node
{
char name[20]; /*进程的名字*/
int prio; /*进程的优先级*/
int round; /*分配CPU的时间片*/
int cputime; /*CPU执行时间*/
int needtime; /*进程执行所需要的时间*/
char state; /*进程的状态,W——就绪态,R——执行态,F——完成态*/
int count; /*记录执行的次数*/
struct node *next; /*链表指针*/
}PCB;
PCB *ready=NULL,*run=NULL,*finish=NULL; /*定义三个队列,就绪队列,执行队列和完成队列*/
int num;
void GetFirst(); /*从就绪队列取得第一个节点*/
void Output(); /*输出队列信息*/
void InsertPrio(PCB *in); /*创建优先级队列,规定优先数越小,优先级越高*/
void InsertTime(PCB *in); /*时间片队列*/
void InsertFinish(PCB *in); /*时间片队列*/
void PrioCreate(); /*优先级输入函数*/
void TimeCreate(); /*时间片输入函数*/
void Priority(); /*按照优先级调度*/
void RoundRun(); /*时间片轮转调度*/
int main(void)
{
char chose;
printf("请输入要创建的进程数目:\n");
scanf("%d",&num);
getchar();
printf("输入进程的调度方法:(P/R)\n");
scanf("%c",&chose);
switch(chose)
{
case 'P':
case 'p':
PrioCreate();
Priority();
break;
case 'R':
case 'r':
TimeCreate();
RoundRun();
break;
default:break;
}
Output();
return 0;
}
void GetFirst() /*取得第一个就绪队列节点*/
{
run = ready;

if(ready!=NULL)
{
run ->state = 'R';
ready = ready ->next;
run ->next = NULL;
}
}
void Output() /*输出队列信息*/
{
PCB *p;
p = ready;
printf("进程名\t优先级\t轮数\tcpu时间\t需要时间\t进程状态\t计数器\n");
while(p!=NULL)
{
printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);
p = p->next;
}
p = finish;
while(p!=NULL)
{
printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);
p = p->next;
}
p = run;
while(p!=NULL)
{
printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);
p = p->next;
}
}
void InsertPrio(PCB *in) /*创建优先级队列,规定优先数越小,优先级越低*/
{
PCB *fst,*nxt;
fst = nxt = ready;

if(ready == NULL) /*如果队列为空,则为第一个元素*/
{
in->next = ready;
ready = in;
}
else /*查到合适的位置进行插入*/
{
if(in ->prio >= fst ->prio) /*比第一个还要大,则插入到队头*/
{
in->next = ready;
ready = in;
}
else
{
while(fst->next != NULL) /*移动指针查找第一个别它小的元素的位置进行插入*/
{
nxt = fst;
fst = fst->next;
}

if(fst ->next == NULL) /*已经搜索到队尾,则其优先级数最小,将其插入到队尾即可*/
{
in ->next = fst ->next;
fst ->next = in;
}
else /*插入到队列中*/
{
nxt = in;
in ->next = fst;
}
}
}
}
void InsertTime(PCB *in) /*将进程插入到就绪队列尾部*/
{
PCB *fst;
fst = ready;

if(ready == NULL)
{
in->next = ready;
ready = in;
}
else
{
while(fst->next != NULL)
{
fst = fst->next;
}
in ->next = fst ->next;
fst ->next = in;
}
}
void InsertFinish(PCB *in) /*将进程插入到完成队列尾部*/
{
PCB *fst;
fst = finish;

if(finish == NULL)
{
in->next = finish;
finish = in;
}
else
{
while(fst->next != NULL)
{
fst = fst->next;
}
in ->next = fst ->next;
fst ->next = in;
}
}
void PrioCreate() /*优先级调度输入函数*/
{
PCB *tmp;
int i;

printf("输入进程名字和进程所需时间:\n");
for(i = 0;i < num; i++)
{
if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL)
{
perror("malloc");
exit(1);
}
scanf("%s",tmp->name);
getchar(); /*吸收回车符号*/
scanf("%d",&(tmp->needtime));
tmp ->cputime = 0;
tmp ->state ='W';
tmp ->prio = 50 - tmp->needtime; /*设置其优先级,需要的时间越多,优先级越低*/
tmp ->round = 0;
tmp ->count = 0;
InsertPrio(tmp); /*按照优先级从高到低,插入到就绪队列*/
}
}
void TimeCreate() /*时间片输入函数*/
{
PCB *tmp;
int i;

printf("输入进程名字和进程时间片所需时间:\n");
for(i = 0;i < num; i++)
{
if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL)
{
perror("malloc");
exit(1);
}
scanf("%s",tmp->name);
getchar();
scanf("%d",&(tmp->needtime));
tmp ->cputime = 0;
tmp ->state ='W';
tmp ->prio = 0;
tmp ->round = 2; /*假设每个进程所分配的时间片是2*/
tmp ->count = 0;
InsertTime(tmp);
}
}
void Priority() /*按照优先级调度,每次执行一个时间片*/
{
int flag = 1;

GetFirst();
while(run != NULL) /*当就绪队列不为空时,则调度进程如执行队列执行*/
{
Output(); /*输出每次调度过程中各个节点的状态*/
while(flag)
{
run->prio -= 3; /*优先级减去三*/
run->cputime++; /*CPU时间片加一*/
run->needtime--;/*进程执行完成的剩余时间减一*/
if(run->needtime == 0)/*如果进程执行完毕,将进程状态置为F,将其插入到完成队列*/
{
run ->state = 'F';
run->count++; /*进程执行的次数加一*/
InsertFinish(run);
flag = 0;
}
else /*将进程状态置为W,入就绪队列*/
{
run->state = 'W';
run->count++; /*进程执行的次数加一*/
InsertTime(run);
flag = 0;
}
}
flag = 1;
GetFirst(); /*继续取就绪队列队头进程进入执行队列*/
}
}
void RoundRun() /*时间片轮转调度算法*/
{

int flag = 1;

GetFirst();
while(run != NULL)
{
Output();
while(flag)
{
run->count++;
run->cputime++;
run->needtime--;
if(run->needtime == 0) /*进程执行完毕*/
{
run ->state = 'F';
InsertFinish(run);
flag = 0;
}
else if(run->count == run->round)/*时间片用完*/
{
run->state = 'W';
run->count = 0; /*计数器清零,为下次做准备*/
InsertTime(run);
flag = 0;
}
}
flag = 1;
GetFirst();
}

‘贰’ 用C语言编写并调试一个模拟的进程调度程序,采用“简单时间片轮转法”调度算法对五个进程进行调度。

#include "stdio.h"
#include "stdlib.h"
#include "string.h"

struct PCB {
char NAME[10]; /*进程名*/
int ROUND; /*进程轮转时间片*/
int REACHTIME; /*进程到达时间*/
int CPUTIME; /*进程占用CPU时间*/
int COUNT; /*计数器*/
int NEEDTIME; /*进程完成还要的CPU时间*/
char STATE; /*进程的状态*/
struct PCB *NEXT; /*链指针*/
};

struct LINK { /*PCB的链结构*/
struct PCB *RUN; /*当前运行进程指针*/
struct PCB *READY; /*就绪队列头指针*/
struct PCB *TAIL; /*就绪队列尾指针*/
struct PCB *FINISH; /*完成队列头指针*/
};

void INIT(LINK *); /*对PCB的链结构初始化*/
void INSERT(LINK *); /*将执行了一个单位时间片数且还未完成的进程的PCB插到就绪队列的队尾*/
void FIRSTIN(LINK *); /*将就绪队列中的第一个进程投入运行*/
void PRINT(LINK *); /*打印每执行一个时间片后的所有进程的状态*/
void PR(PCB *); /*打印一个进程的状态*/
int CREATE(LINK *,int); /*创建新的进程*/
void ROUNDSCH(LINK *); /*按时间片轮转法调度进程*/

void main() {
LINK pcbs;
int i;
INIT(&pcbs);
i=0;
printf("创建5个进程\n\n");
while(i<5) {
if(CREATE(&pcbs,i+1)==1) {
printf("进程已创建\n\n");
i++;
}
else
printf("进程创建失败\n\n");
}
FIRSTIN(&pcbs);
ROUNDSCH(&pcbs);
}

void ROUNDSCH(LINK *p) {
PCB *pcb;
while(p->RUN!=NULL) {
pcb=(PCB *)malloc(sizeof(PCB));
strcpy(pcb->NAME,p->RUN->NAME);
pcb->ROUND=p->RUN->ROUND;
pcb->REACHTIME=p->RUN->REACHTIME;
pcb->CPUTIME=p->RUN->CPUTIME;
pcb->COUNT=p->RUN->COUNT;
pcb->NEEDTIME=p->RUN->NEEDTIME;
pcb->STATE=p->RUN->STATE;
pcb->NEXT=p->RUN->NEXT;
pcb->CPUTIME++;
pcb->NEEDTIME--;
pcb->COUNT++;
if(pcb->NEEDTIME==0) {
pcb->NEXT=p->FINISH->NEXT;
p->FINISH->NEXT=pcb;
pcb->STATE='F';
p->RUN=NULL;
if(p->READY!=p->TAIL)
FIRSTIN(p);
}
else {
p->RUN=pcb;
if(pcb->COUNT==pcb->ROUND) {
pcb->COUNT=0;
if(p->READY!=p->TAIL) {
pcb->STATE='W';
INSERT(p);
FIRSTIN(p);
}
}
}
PRINT(p);
}
}

void INIT(LINK *p) {
p->RUN=NULL;
p->TAIL=p->READY=(PCB *)malloc(sizeof(PCB));
p->READY->NEXT=NULL;
p->FINISH=(PCB *)malloc(sizeof(PCB));
p->FINISH->NEXT=NULL;
}

int CREATE(LINK *p,int n) {
PCB *pcb,*q;
pcb=(PCB *)malloc(sizeof(PCB));
flushall();
printf("请输入第%d个进程的名称:\n",n);
gets(pcb->NAME);
printf("请输入第%d个进程的轮转时间片数:\n",n);
scanf("%d",&(pcb->ROUND));
printf("请输入第%d个进程的到达时间:\n",n);
scanf("%d",&(pcb->REACHTIME));
pcb->CPUTIME=0;
pcb->COUNT=0;
printf("请输入第%d个进程需运行的时间片数:\n",n);
scanf("%d",&(pcb->NEEDTIME));
pcb->STATE='W';
pcb->NEXT=NULL;
if(strcmp(pcb->NAME,"")==0||pcb->ROUND<=0||pcb->NEEDTIME<=0) /*输入错误*/
return 0;
q=p->READY;
while(q->NEXT!=NULL&&q->NEXT->REACHTIME<=pcb->REACHTIME)
q=q->NEXT;
pcb->NEXT=q->NEXT;
q->NEXT=pcb;
if(pcb->NEXT==NULL)
p->TAIL=pcb;
return 1;
}

void FIRSTIN(LINK *p) {
PCB *q;
q=p->READY->NEXT;
p->READY->NEXT=q->NEXT;
q->NEXT=NULL;
if(p->READY->NEXT==NULL)
p->TAIL=p->READY;
q->STATE='R';
p->RUN=q;
}

void INSERT(LINK *p) {
PCB *pcb;
pcb=(PCB *)malloc(sizeof(PCB));
strcpy(pcb->NAME,p->RUN->NAME);
pcb->ROUND=p->RUN->ROUND;
pcb->REACHTIME=p->RUN->REACHTIME;
pcb->CPUTIME=p->RUN->CPUTIME;
pcb->COUNT=p->RUN->COUNT;
pcb->NEEDTIME=p->RUN->NEEDTIME;
pcb->STATE=p->RUN->STATE;
pcb->NEXT=p->RUN->NEXT;
p->TAIL->NEXT=pcb;
p->TAIL=pcb;
p->RUN=NULL;
pcb->STATE='W';
}

void PRINT(LINK *p) {
PCB *pcb;
printf("执行一个时间片后的所有进程的状态:\n\n");
if(p->RUN!=NULL)
PR(p->RUN);
if(p->READY!=p->TAIL) {
pcb=p->READY->NEXT;
while(pcb!=NULL) {
PR(pcb);
pcb=pcb->NEXT;
}
}
pcb=p->FINISH->NEXT;
while(pcb!=NULL) {
PR(pcb);
pcb=pcb->NEXT;
}
}

void PR(PCB *p) {
printf("进程名:%s\n",p->NAME);
printf("进程轮转时间片:%d\n",p->ROUND);
printf("进程到达时间:%d\n",p->REACHTIME);
printf("进程占用CPU时间:%d\n",p->CPUTIME);
printf("计数器:%d\n",p->COUNT);
printf("进程完成还要的CPU时间:%d\n",p->NEEDTIME);
printf("进程的状态:%c\n\n",p->STATE);
}

‘叁’ 页面调度先进先出算法(FIFO) C语言描述

7,0,1 //先把三个页面放入主存 0,1,2//缺少页面2,把2放入,页面7出 1,2,0 2,0,3//缺少页面3,放入3,页面1出 2.3.0 3,0,4//缺少页面4,放入4,页面2出 0,4,2//缺少页面2,放入2,页面3出 4,2,3//缺少页面3,放入3,页面0出 2,3,0//缺少页面0,放入0,页面4出 2,0,3 0,3,2 3,2,1//缺少页面1,放入1,页面0出 3,1,2

‘肆’ 用C语言编程模拟处理机调度(实现一种算法)

#include <stdlib.h>
#include <conio.h>
#define getpch(type) (type*)malloc(sizeof(type))
#define NULL 0

struct pcb { /* 定义进程控制块PCB */
char name[10];
char state;
int super;
int ntime;
int rtime;
struct pcb* link;
}*ready=NULL,*p;

typedef struct pcb PCB;

void sort() /* 建立对进程进行优先级排列函数*/
{
PCB *first, *second;
int insert=0;
if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/
{
p->link=ready;
ready=p;
}
else /* 进程比较优先级,插入适当的位置中*/
{
first=ready;
second=first->link;
while(second!=NULL)
{
if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/
{ /*插入到当前进程前面*/
p->link=second;
first->link=p;
second=NULL;
insert=1;
}
else /* 插入进程优先数最低,则插入到队尾*/
{
first=first->link;
second=second->link;
}
}
if(insert==0) first->link=p;
}
}

void input() /* 建立进程控制块函数*/
{
int i,num;
system("cls"); /*清屏*/
printf("\n 请输入进程数: ");
scanf("%d",&num);
for(i=1;i<=num;i++)
{
printf("\n 进程号No.%d:\n",i);
p=getpch(PCB);
printf("\n 输入进程名:");
scanf("%s",p->name);
printf("\n 输入进程优先数:");
scanf("%d",&p->super);
printf("\n 输入进程运行时间:");
scanf("%d",&p->ntime);
printf("\n");
p->rtime=0;p->state='W';
p->link=NULL;
sort(); /* 调用sort函数*/
}
}

int space()
{
int l=0;
PCB* pr=ready;
while(pr!=NULL)
{
l++;
pr=pr->link;
}
return(l);
}

void disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/
{
printf("\n 进程名\t 状态\t 优先数\t 需要运行时间\t 已经运行时间\n");
printf("|%s\t",pr->name);
printf("|%c\t",pr->state);
printf("|%d\t",pr->super);
printf("|%d\t\t",pr->ntime);
printf("|%d\t",pr->rtime);
printf("\n");
}

void check() /* 建立进程查看函数 */
{
PCB* pr;
printf("\n **** 当前正在运行的进程是:\n"); /*显示当前运行进程*/
disp(p);
pr=ready;
printf("\n **** 当前就绪队列状态为:\n"); /*显示就绪队列状态*/
while(pr!=NULL)
{
disp(pr);
pr=pr->link;
}
}

void destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/
{
printf("\n 进程 [%s] 已完成.\n",p->name);
free(p);
}

void running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/
{
(p->rtime)++;
if(p->rtime==p->ntime)
destroy(); /* 调用destroy函数*/
else
{
(p->super)--;
p->state='W';
sort(); /*调用sort函数*/
}
}

void main() /*主函数*/
{
int len,h=0;
char ch;
input();
len=space();
while((len!=0)&&(ready!=NULL))
{
ch=getchar();
h++;
printf("-----------------------------------------------------");
printf("\n 现在是第%d次运行: \n",h);
p=ready;
ready=p->link;
p->link=NULL;
p->state='R';
check();
running();
printf("\n 按任意键继续......\n");
}
printf("\n\n 进程已经完成.\n");
}

‘伍’ )用C语言(或其它语言,如Java)编程实现对N个进程采用某种进程调度算法(如动态优先权调度

公众:类PrivilegeProcess {
公共静态无效的主要(字串[] args){

MyQueue的MyQueue的新MyQueue的();/ /声明队列

印刷电路板[PCB = {新的PCB(001 ,8,1),新的PCB(002,7,9),新的PCB(003,3,8),新的PCB(004,1,7),新的PCB(005,7,4)};
> PCB段=新的PCB();

(INT I = 0; <pcb.length; + +){/ /初始化先进行排序,选择排序这里使用的是高优先级的一线队

(J =我; <pcb.length; J + +){

(PCB [I]。特权<PCB [J]。特权){

段= PCB [1];

PCB [I] = PCB [J];

PCB [J] =段;

}

}

}

体系。通过out.println(“入队后第一时间的进程的顺序:”);

(INT I = 0; <pcb.length; + +){

的System.out调用println(第一次入队#程序名称:“+ PCB [我]。名称+ totaltime:”+ PCB [I]。totaltime +“的”特权“+ PCB [我]。特权); }

();

myqueue.start(PCB);

}

}

类MyQueue的{

INT指数= 0;

PCB [] PC =新的PCB [5];

PCB [] PC1 =新的PCB [4];

PCB温度=新的PCB() BR />公共无效排队(PCB工艺){/ /排队算法

(指数== 5){

(“出界!”);

返回

}

PC [索引] =进程;

指数+ +;

}

公共:PCB DEQUEUE(){/ /出队算法(索引== 0)

返回空;

(INT I = 0; <pc1.length; + +){

PC1 [I] = PC [ +1];

}

指数 -

温度= PC [0];

(INT I = 0; <pc1.length; + +){ BR /> PC [I] = PC1 [I];

}

回报条件;

}

公共无效启动(PCB [] PC){/ /进程表算法

(PC [0]。isNotFinish ==真| | PC [1 isNotFinish ==真| | PC [2 isNotFinish ==真| | PC [3]。时isNotFinish ==真| | PC [4]。isNotFinish ==){

/ / *注:| |运算符都是假的,所有的表达式结果为假,否则真

(INT I = 0; <PC长度; + +){

PC [I]。运行(这一点); />} 的System.out.println();

(INT I = 0; <pc.length; + +){/ /处理每个运行一次运行的时间片的长度重新排序优先一旦

(J =我; <pc.length; J + +){

如果(PC [I]特权<PC [J]。特权){

温度= PC [I];

PC [I] = PC [J];

PC [J] =温度;

}

}

}

}

}

}

类PCB {/ /声明过程级

和int名,totaltime ,运行时特权;

布尔isNotFinish的;

公众PCB(){

}

公开PCB(名称,诠释totaltime特权){

this.name =的名称;/ /进程名

this.totaltime = totaltime ;/ /

this.privilege =特权;/ /总时间优先 this.runtime = 2 ;/ /时间片值是2

this.isNotFinish =真;/ /是否执行完成

(“初始值:程序名称:”+名+“totaltime:”+ totaltime +“特权”+特权);

System.out的。调用println();

}

MyQueue的MQ公共无效的run(){/ /处理的基础上实施的时间片算法

(totalTime> 1){ totaltime =运行;/ /总时间大于1,总时间=总时间 - 时间片

特权 -

(“程序名称:”+姓名+“ remaintime:“+ +”特权“+特权); totaltime

的} else if(totaltime == 1){

totaltime - ;/ /总时间为1时,执行时间为1
>特权 -

(“程序名称:”+姓名+“remaintime:”+ totaltime +“特权”+特权);

}其他{

isNotFinish =假;/ / 0,将isNotFinish标志设置为假

}

如果(isNotFinish ==真){br mq.deQueue();

mq.enQueue(本);

}

}
}

‘陆’ 怎么样实现分页管理的缺页调度clock算法C语言代码

这个程序我做过,现在给你!!写了很久的!!

#include<stdafx.h>
#include<stdlib.h>
#include<stdio.h>
#define n 64//实验中假定主存的长度
#define m 4//实验中假定每个作业分得主存块块数
int p[m];//定义页
int head=0;
struct
{
short int lnumber;//页号
short int flag;//表示该页是否在主存,"1"表示在主存,"0"表示不在主存
short int pnumber;//该页所在主存块的块号
short int write;//该页是否被修改过,"1"表示修改过,"0"表示没有修改过
short int dnumber;//该页存放在磁盘上的位置,即磁盘块号
short int times;//被访问的次数,用于LRU算法
}page[n];//定义页表
//各个函数的实现如下:
void computer()
{
int i;
for(i=0;i<n;i++)
{
page[i].lnumber = i;
page[i].flag = 0;
page[i].pnumber = 10000;//用10000表示为空
page[i].write = 0;
page[i].dnumber = i;
page[i].times = 0;
}//初始化页表

for(i=0;i<m;i++)
{
page[i].pnumber = i;
}

for(i=0;i<m;i++)
{
p[i] = i;
page[i].flag = 1;
}//初始化页
}
void showpagelist()
{
int i;
printf("\n页号\t是否在主存中\t块 号\t是否被修改过\t磁盘块号\t访问次数\n");
for(i=0;i<n;i++)
{
printf("%d\t%d\t\t%d\t\t%d\t\t%d\t\t%d\n",page[i].lnumber,page[i].flag,page[i].pnumber,page[i].write,page[i].dnumber,page[i].times);
}
}
void showpage()
{
int i;
for(i=0;i<m;i++)
{
printf("\t%d\n",p[i]);
}
}
void transformation() //缺页中断处理
{
unsigned logicAddress,logicNumber,innerAddress,physicsAddress,physicsNumber;
int i, fail = 0;
int method,temppage=0;
short int times = 10000;
printf("请输入一个逻辑地址(四位十六进制数):");
scanf("%x",&logicAddress);//读入逻辑地址
logicNumber = logicAddress >> 10;//得到页号
printf("页号为:%ld\n",logicNumber);
innerAddress = logicAddress & 0x03ff;//得到页内地址
printf("页内地址为:%ld\n",innerAddress);
for(i=0;i<n;i++)
{
if(logicNumber==(unsigned)page[i].lnumber)
{
if(page[i].flag == 1)
{
printf("请求的页面在主存中!\n");
page[i].times++;
physicsNumber = page[i].pnumber;//由页号得到块号
printf("请求的主存块号为:%ld\n",physicsNumber);
physicsAddress = physicsNumber << 10 |innerAddress;//得到物理地址
printf("请求的物理地址为:%ld",physicsAddress);//输出物理地址
break;
}
else
{
printf("请求的页面不在主存中! 将进行缺页中断处理!\n请选择算法!\n");
printf("1.先进先出\n2.最近最少用\n请选择置换算法:");
scanf("%d",&method);
if(method == 1) //采用先进先出算法
{
printf("采用先进先出算法!\n");
fail = p[head];
printf("第%d页将被替换!\n",fail);
p[head] = logicNumber;
head = (head+1) % m;
if(page[fail].write == 1)
printf("第%d页曾被修改过!\n",fail);
page[fail].flag = 0;
page[logicNumber].flag = 1;
page[logicNumber].write = 0;
page[logicNumber].pnumber = page[fail].pnumber;
page[fail].pnumber = 10000;
page[logicNumber].times++;
break;
}
else if(method == 2) //采用最近最少用算法
{
printf("采用最近最少用算法!\n");
for(i=0;i<n;i++)
{
if(page[i].flag == 1)
{
if(page[i].times<times)
{
times = page[i].times;
temppage = page[i].lnumber;
}
}
}
printf("第%d页将被替换!\n",temppage);
for(i=0;i<m;i++)
{
if(p[i] == temppage)
{
p[i] = logicNumber;
}
}
if(page[temppage].write == 1)
printf("第%d页曾被修改过!\n",temppage);
page[temppage].flag = 0;
page[logicNumber].flag = 1;
page[logicNumber].write = 0;
page[logicNumber].pnumber = page[temppage].pnumber;
page[temppage].pnumber = 10000;
page[logicNumber].times++;
break;
}
else
{
printf("你输入有误,即将退出!");
exit(1);
}
}
}
}
}
void main()
{
char c,d,flag='y';
printf("页表正在初始化中...,3秒钟后为你显示页和页表!\n");
computer();
showpage();
showpagelist();
while(flag == 'y' || flag == 'Y')
{
transformation();
printf("是否显示页和页表?(Y/N)");
c = getchar();
c = getchar();
if(c=='Y'||c=='y')
{
showpage();
showpagelist();
}
else
{
while(c=='N'||c=='n')
{
printf("\n是否继续进行请求分页?(Y/N)");
d = getchar();
d = getchar();
if(d=='Y'||d=='y')
{
transformation();
printf("\n是否显示页和页表?(Y/N)");
c = getchar();
c = getchar();
if(c=='Y'||c=='y')
{
showpage();
showpagelist();
}
}
else if (d=='N'||d=='n')
exit(1);
else
printf("输入错误!\n");
}
}
printf("\n是否继续进行请求分页?(Y/N)");
flag = getchar();
flag = getchar();

}
}

‘柒’ 求进程调度先来先服务算法,短进程优先算法完整c语言代码

/*(一)进程调度

进程调度算法有FIFO,优先数调度算法,时间片轮转调度算法,分级调度算法,

输入:进程流文件,其中存储的是一系列要执行的进程,
每个作业包括三个数据项:
进程名 所需时间 优先数(0级最高)
输出:
进程执行流 等待时间 平均等待时间

本程序包括:FIFO,优先数调度算法,时间片轮转调度算法

进程流文件process_stream.txt
测试数据:
p0 16 2
p1 5 1
p2 4 3
p3 8 0
p4 9 4
p5 7 6

VC++调试通过
*/
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>

const int Quatum=2;//定义时间片的长度为2秒
const int MAXPCB=100;//定义最大进程数

//定义进程结构体
typedef struct node
{
char name[20];//进程名
int time; //进程运行时间
int privilege;//进程优先级(静态)
int finished;//进程完成标志,0-未完成,1-已完成
int wait_time;//进程等待时间
}pcb;

pcb pcbs[MAXPCB];
int quantiry;//进程流文件中的进程总数

void initial()
{
int i;
for (i=0;i<MAXPCB;i++)
{
strcpy(pcbs[i].name,"");
pcbs[i].time=0;
pcbs[i].privilege=0;
pcbs[i].finished=0;
pcbs[i].wait_time=0;
}
quantiry=0;
}

int readData()
{
FILE *fp;
char fname[20];
int i;
cout<<"请输入进程流文件名:"<<endl;
cin>>fname;
if ((fp=fopen(fname,"r"))==NULL)
{
cout<<"错误,文件打不开,请检查文件名"<<endl;
}
else
{
while (!feof(fp))
{
fscanf(fp,"%s %d %d %d",pcbs[quantiry].name,
&pcbs[quantiry].time,&pcbs[quantiry].privilege);
quantiry++;
}
//输出所读入得数据
cout<<"输出所读入的数据"<<endl;
cout<<"进程流文件中的进程总数="<<quantiry<<endl;
cout<<"进程名 所需时间 优先数"<<endl;

for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[i].name<<" "<<pcbs[i].time<<" "<<pcbs[i].privilege<<endl;
}

return 1;
}

return 0;
}

//重置数据,以供另一个算法使用
void init()
{
int i;
for (i=0;i<MAXPCB;i++)
{
pcbs[i].finished=0;
pcbs[i].wait_time=0;
}
}

void FIFO()
{
int i,j;

int total;
//输出FIFO算法执行流
cout<<endl<<"---------------------------------------------------------------"<<endl;
cout<<"FIFO算法执行流:"<<endl;
cout<<"进程名 等待时间"<<endl;

for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[i].name<<" "<<pcbs[i].wait_time<<endl;
for (j=i+1;j<quantiry;j++)
{
pcbs[j].wait_time+=pcbs[i].time;
}
}

total=0;
for (i=0;i<quantiry;i++)
{
total+=pcbs[i].wait_time;
}
cout<<"总等待时间:"<<total<<" "<<"平均等待时间:"<<total/quantiry<<endl;
}

//优先度调度算法
void privilege()
{
int i,j,p;
int passed_time=0;
int total;

int queue[MAXPCB];
int current_privielege=1000;

for (i=0;i<quantiry;i++)
{
current_privielege=1000;
for (j=0;j<quantiry;j++)
{
if ((pcbs[j].finished==0)&&(pcbs[j].privilege<current_privielege))
{
p=j;
current_privielege=pcbs[j].privilege;
}
}
queue[i]=p;
pcbs[p].finished=1;
pcbs[p].wait_time+=passed_time;
passed_time+=pcbs[p].time;

}
//输出优先数调度执行流
cout<<endl<<"-----------------------------------------"<<endl;
cout<<"优先数调度执行流:"<<endl;
cout<<"进程名 等待时间"<<endl;

for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[queue[i]].name<<" "<<pcbs[queue[i]].wait_time<<"--"<<queue[i]<<endl;
}

total=0;
for (i=0;i<quantiry;i++)
{
total+=pcbs[i].wait_time;
}

cout<<"总等待时间:"<<total<<" 平均等待时间:"<<total/quantiry<<endl;
}

//时间片轮转调度算法
void timer()
{
int i,j,sum,flag=1;
int passed_time=0;
int max_time=0;
int round=0;

int queue[1000];
int total=0;

while(flag==1)
{
flag=0;
for (i=0;i<quantiry;i++)
{
if (pcbs[i].finished==0)
{
flag=1;
queue[total]=i;
total++;
if (pcbs[i].time<=Quatum*(round+1))
pcbs[i].finished=1;
}
}
round++;
}

cout<<endl<<"---------------------------------------------------------------"<<endl;
cout<<"时间片轮转调度执行流:";
for(i=0;i<total;i++)
{
cout<<pcbs[queue[i]].name<<" ";
}
cout<<endl;
cout<<"进程名 结束时间 运行时间 等待时间"<<endl;

sum=0;

for (i=0;i<quantiry;i++)
{
for(j=total-1;j>=0;j--)//从轮转调度执行流序列由后往前比较,找到同名进程即可计算其完成时间
{
if (strcmp(pcbs[queue[j]].name,pcbs[i].name)==0)
{
cout<<" "<<pcbs[i].name<<" "<<(j+1)*Quatum<<" ";
cout<<pcbs[i].time<<" "<<(j+1)*Quatum-pcbs[i].time<<endl;
sum+=(j+1)*Quatum-pcbs[i].time;
break;
}
}
}

cout<<"总等待时间:"<<sum<<" "<<"平均等待时间:"<<sum/quantiry<<endl;
}

//显示版权信息函数
void version()
{
cout<<endl<<endl;

cout<<" ┏━━━━━━━━━━━━━━━━━━━━━━━┓"<<endl;
cout<<" ┃ 进程调度模拟系统 ┃"<<endl;
cout<<" ┠───────────────────────┨"<<endl;
cout<<" ┃ version 2011 ┃"<<endl;
cout<<" ┗━━━━━━━━━━━━━━━━━━━━━━━┛"<<endl;
cout<<endl<<endl;
}
//主函数

int main()
{
int flag;
version();
initial();
flag=readData();
if(flag==1){
FIFO();
init();
privilege();
init();
timer();
}
cout<<endl;
system("pause");
return 0;
}

‘捌’ 权重轮询调度算法(Weighted Round-Robin Scheling) [C语言实现]

weight[i+1] = a % weight[i+1];
这句话导致后面的weight为0

热点内容
用户管理源码 发布:2024-11-24 21:29:36 浏览:677
监控怎么配置路由器 发布:2024-11-24 21:29:27 浏览:455
小型编译器的实现 发布:2024-11-24 21:27:48 浏览:999
安卓手机为什么下巴不掉 发布:2024-11-24 21:26:37 浏览:214
怎么编程枪战 发布:2024-11-24 21:25:52 浏览:855
安卓公测版哪个好 发布:2024-11-24 21:15:58 浏览:873
androidforvs2010 发布:2024-11-24 21:06:05 浏览:286
安装MySqllinux 发布:2024-11-24 21:05:51 浏览:326
联通网洛盒的密码在哪里 发布:2024-11-24 21:05:12 浏览:181
牌顺编程 发布:2024-11-24 20:56:23 浏览:729