当前位置:首页 » 编程语言 » pythonredis队列

pythonredis队列

发布时间: 2024-09-09 14:43:58

python 常用的标准库以及第三方库有哪些

Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令。
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、孝高模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解肢携决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模历慎伏块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。

Ⅱ python入门需要学哪些

初学者学习Python需循序渐进,可以从以下内容入手学习:

1.Python基础知识

学习任何一门编程语言都需要学习相关语法知识,Python基础知识的学习主要包括Python解释器执行原理、字符编码、注释、变量、缩进、流程控制、文件操作、数据类型、数据类型内置方法、字符串格式化、运算符、输入输出、三元运算、collections、列表、字典、元组、集合、IO操作、文件增删改查、函数等。

5.数据库、缓存、队列

Python数据库、缓存、队列学习内容为Python操作redis、Python操作memcache、rabbitMQ消息队列、数据库介绍、mysql数据库安装使用、mysql管理、mysql数据类型、常用mysql命令、创建数据库、外键、增删改查表、权限、事务、索引、Python操作mysql等。

6.Web开发基础

Python之Web开发基础学习内容为HTML基础、CSS基础、JavaScript基础、局部变量和全局变量、集合、数组、字典、函数参数、原型、面向对象、作用域、dom编程、jquery介绍、jquery选择器、jquery属性和CSS操作、jquery文档处理、jquery筛选、jquery事件托管、jquery事件、jquery ajax、jquery扩展方法、bootstrap使用、EasyUI介绍和使用等。

7.Web框架学习

Python之Web框架学习内容为Web框架本质、socket服务器、基于反射的路由系统、WSGI介凯闭行绍及原理实现态御、开发自己的Web框架、MVC和MTV、路由系统、模板、django基础学习与使用、普通路由和动态路由、模板引擎、ORM介绍、Django ORM增删改查学习、自定义tag、django进阶学习与使用、模型绑定、Form表单验证、Django ORM进阶学习、ModelForm、自定义Validator等。

Ⅲ Python 异步任务队列Celery 使用

在 Python 中定义 Celery 的时候,我们要引入 Broker,中文翻译过来就是“中间人”的意思。在工头(生产者)提出任务的时候,把所有的任务放到 Broker 里面,在 Broker 的另外一头,一群码农(消费者)等着取出一个个任务准备着手做。这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的。所以我们要引入 Backend 来保存每次任务的结果。这个 Backend 也是存储任务的信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到 Backend,这样我们取回结果,便可以知道有多少任务执行失败了。

其实现架构如下图所示:

可以看到,Celery 主要包含以下几个模块:

celery可以通过pip自动安装。

broker 可选择使用RabbitMQ/redis,backend可选择使用RabbitMQ/redis/MongoDB。RabbitMQ/redis/mongoDB的安装请参考对应的官方文档。

------------------------------rabbitmq相关----------------------------------------------------------

官网安装方法: http://www.rabbitmq.com/install-windows.html

启动管理插件:sbin/rabbitmq-plugins enable rabbitmq_management 启动rabbitmq:sbin/rabbitmq-server -detached

rabbitmq已经启动,可以打开页面来看看 地址: http://localhost:15672/#/

用户名密码都是guest 。进入可以看到具体页面。 关于rabbitmq的配置,网上很多 自己去搜以下就ok了。

------------------------------rabbitmq相关--------------------------------------------------------

项目结构如下:

使用前,需要三个方面:celery配置,celery实例,需执行的任务函数,如下:

Celery 的配置比较多,可以在 官方配置文档: http://docs.celeryproject.org/en/latest/userguide/configuration.html 查询每个配置项的含义。

当然,要保证上述异步任务and下述定时任务都能正常执行,就需要先启动celery worker,启动命令行如下:

启动beat ,执行定时任务时, Celery会通过celery beat进程来完成。Celery beat会保持运行, 一旦到了某一定时任务需要执行时, Celery beat便将其加入到queue中. 不像worker进程, Celery beat只需要一个即可。而且为了避免有重复的任务被发送出去,所以Celery beat仅能有一个。

命令行启动:

如果你想将celery worker/beat要放到后台运行,推荐可以扔给supervisor。

supervisor.conf如下:

Ⅳ Python 常用的标准库以及第三方库有哪些

我也来几个吧
standard libs:

itertools http://docs.python.org/2/library/itertools.html

functools http://docs.python.org/2/library/functools.html 学好python有必要掌握上面这两个库吧,
re 正则
subprocess http://docs.python.org/2/library/subprocess.html 调用shell命令的神器
pdb 调试
traceback 调试
pprint 漂亮的输出
logging 日志
threading和multiprocessing 多线程
urllib/urllib2/httplib http库,httplib底层一点,推荐第三方的库requests
os/sys 系统,环境相关
Queue 队列
pickle/cPickle 序列化工具
hashlib md5, sha等hash算法
cvs
json/simplejson python的json库,据so上的讨论和benchmark,simplejson的性能要高于json
timeit 计算代码运行的时间等等
cProfile python性能测量模块
glob 类似与listfile,可以用来查找文件
atexit 有一个注册函数,可用于正好在脚本退出运行前执行一些代码
dis python 反汇编,当对某条语句不理解原理时,可以用dis.dis 函数来查看代码对应的python 解释器指令等等。

3th libs:

paramiko https://github.com/paramiko/paramiko ssh python 库
selenium https://pypi.python.org/pypi/selenium 浏览器自动化测试工具selenium的python 接口
lxml http://lxml.de/ python 解析html,xml 的神器
mechanize https://pypi.python.org/pypi/mechanize/ Stateful programmatic web browsing

pycurl https://pypi.python.org/pypi/pycurl cURL library mole for Python
Fabric http://docs.fabfile.org/en/1.8/
Fabric is a Python (2.5 or higher) library and command-line tool for
streamlining the use of SSH for application deployment or systems
administration tasks.

xmltodict https://github.com/martinblech/xmltodict xml 转 dict,真心好用
urllib3 和 requests: 当然其实requests就够了 Requests: HTTP for Humans
flask http://flask.pocoo.org/python web 微框架
ipdb 调试神器,同时推荐ipython!结合ipython使用
redis redis python接口
pymongo mongodbpython接口
PIL http://www.pythonware.com/procts/pil/ python图像处理
mako http://www.makotemplates.org/ python模版引擎
numpy , scipy 科学计算
matplotlib 画图

scrapy 爬虫
django/tornado/web.py/web2py/uliweb/flask/twisted/bottle/cherrypy.等等 python web框架/服务器
sh 1.08 — sh v1.08 documentation 用来运行shell 模块的 极佳选择

暂时记得这么多吧,不过都是我自己常用的库 :) 。。欢迎补充

UPDATE:
A curated list of awesome Python frameworks, libraries and software.

vinta/awesome-python · GitHub

几乎所有很赞的 python 库,和框架都在这个列表里。

其他的 awesome list:
bayandin/awesome-awesomeness · GitHub

Ⅳ Python实现简单多线程任务队列

Python实现简单多线程任务队列
最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题。梯度下降算法的代码如下(伪代码):
defgradient_descent(): # the gradient descent code plotly.write(X, Y)
一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度。
一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好。 我不想用一个像 cerely(一种分布式任务队列)一样大而全的任务队列框架,因为框架对于我的这点需求来说太重了,并且我的绘图也并不需要 redis 来持久化数据。
那用什么办法解决呢?我在 python 中写了一个很小的任务队列,它可以在一个单独的线程中调用 plotly.write函数。下面是程序代码。
classTaskQueue(Queue.Queue):
首先我们继承 Queue.Queue 类。从 Queue.Queue 类可以继承 get 和 put 方法,以及队列的行为。
def__init__(self, num_workers=1): Queue.Queue.__init__(self) self.num_workers=num_workers self.start_workers()
初始化的时候,我们可以不用考虑工作线程的数量。
defadd_task(self, task,*args,**kwargs): args=argsor() kwargs=kwargsor{} self.put((task, args, kwargs))
我们把 task, args, kwargs 以元组的形式存储在队列中。*args 可以传递数量不等的参数,**kwargs 可以传递命名参数。
defstart_workers(self): foriinrange(self.num_workers): t=Thread(target=self.worker) t.daemon=True t.start()
我们为每个 worker 创建一个线程,然后在后台删除。
下面是 worker 函数的代码:
defworker(self): whileTrue: tupl=self.get() item, args, kwargs=self.get() item(*args,**kwargs) self.task_done()
worker 函数获取队列顶端的任务,并根据输入参数运行,除此之外,没有其他的功能。下面是队列的代码:
我们可以通过下面的代码测试:
defblokkah(*args,**kwargs): time.sleep(5) print“Blokkah mofo!” q=TaskQueue(num_workers=5) foriteminrange(1): q.add_task(blokkah) q.join()# wait for all the tasks to finish. print“Alldone!”
Blokkah 是我们要做的任务名称。队列已经缓存在内存中,并且没有执行很多任务。下面的步骤是把主队列当做单独的进程来运行,这样主程序退出以及执行数据库持久化时,队列任务不会停止运行。但是这个例子很好地展示了如何从一个很简单的小任务写成像工作队列这样复杂的程序。
defgradient_descent(): # the gradient descent code queue.add_task(plotly.write, x=X, y=Y)
修改之后,我的梯度下降算法工作效率似乎更高了。如果你很感兴趣的话,可以参考下面的代码。 classTaskQueue(Queue.Queue): def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers() defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs)) defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start() defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done() deftests():defblokkah(*args,**kwargs):time.sleep(5)print"Blokkah mofo!" q=TaskQueue(num_workers=5) foriteminrange(10):q.add_task(blokkah) q.join()# block until all tasks are doneprint"All done!" if__name__=="__main__":tests()

Ⅵ 大型的 PHP应用 通常使用什么应用做 消息队列 的

一、消息队列概述
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构。是大型分布式系统不可缺少的中间件。
目前在生产环境,使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。
二、消息队列应用场景
以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。
2.1异步处理
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。
(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。(架构KKQ:466097527,欢迎加入)
(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。
假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。
小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?
引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。
2.2应用解耦
场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:
传统模式的缺点:
1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;
2) 订单系统与库存系统耦合;
如何解决以上问题呢?引入应用消息队列后的方案,如下图:
订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。
假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。
2.3流量削锋
流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
可以控制活动的人数;
可以缓解短时间内高流量压垮应用;
用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;
秒杀业务根据消息队列中的请求信息,再做后续处理。
2.4日志处理
日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:
日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;
Kafka消息队列,负责日志数据的接收,存储和转发;
日志处理应用:订阅并消费kafka队列中的日志数据;
以下是新浪kafka日志处理应用案例:
(1)Kafka:接收用户日志的消息队列。
(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。
(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。
(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。
2.5消息通讯
消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。
点对点通讯:
客户端A和客户端B使用同一队列,进行消息通讯。
聊天室通讯:
客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。
以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。
三、消息中间件示例
3.1电商系统
消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)
(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。
(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。
3.2日志收集系统
分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。
Zookeeper注册中心,提出负载均衡和地址查找服务;
日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;
四、JMS消息服务
讲消息队列就不得不提JMS 。JMS(Java Message Service,Java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。
在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。
4.1消息模型
在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
4.1.1 P2P模式
P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
P2P的特点
每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
接收者在成功接收消息之后需向队列应答成功
如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。(架构KKQ:466097527,欢迎加入)
4.1.2 Pub/sub模式
包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
Pub/Sub的特点
每个消息可以有多个消费者
发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。
为了消费消息,订阅者必须保持运行的状态。
为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。
如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。
4.2消息消费
在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。
(1)同步
订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;
(2)异步
订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。
JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。
JNDI在JMS中起到查找和访问发送目标或消息来源的作用。(架构KKQ:466097527,欢迎加入)
4.3JMS编程模型
(1) ConnectionFactory
创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。可以通过JNDI来查找ConnectionFactory对象。
(2) Destination
Destination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。
所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。
(3) Connection
Connection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。Connection可以产生一个或多个Session。跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。
(4) Session
Session是操作消息的接口。可以通过session创建生产者、消费者、消息等。Session提供了事务的功能。当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。同样,也分QueueSession和TopicSession。
(5) 消息的生产者
消息生产者由Session创建,并用于将消息发送到Destination。同样,消息生产者分两种类型:QueueSender和TopicPublisher。可以调用消息生产者的方法(send或publish方法)发送消息。
(6) 消息消费者
消息消费者由Session创建,用于接收被发送到Destination的消息。两种类型:QueueReceiver和TopicSubscriber。可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。
(7) MessageListener
消息监听器。如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一种MessageListener。
深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。
五、常用消息队列
一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。
5.1 ActiveMQ
ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。
ActiveMQ特性如下:
⒈ 多种语言和协议编写客户端。语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP
⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)
⒊ 对spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性
⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上
⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA
⒍ 支持通过JDBC和journal提供高速的消息持久化
⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点
⒏ 支持Ajax
⒐ 支持与Axis的整合
⒑ 可以很容易得调用内嵌JMS provider,进行测试
5.2 RabbitMQ
RabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。
几个重要概念:
Broker:简单来说就是消息队列服务器实体。
Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。
Queue:消息队列载体,每个消息都会被投入到一个或多个队列。
Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。
Routing Key:路由关键字,exchange根据这个关键字进行消息投递。
vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。
procer:消息生产者,就是投递消息的程序。
consumer:消息消费者,就是接受消息的程序。
channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。
消息队列的使用过程,如下:
(1)客户端连接到消息队列服务器,打开一个channel。
(2)客户端声明一个exchange,并设置相关属性。
(3)客户端声明一个queue,并设置相关属性。
(4)客户端使用routing key,在exchange和queue之间建立好绑定关系。
(5)客户端投递消息到exchange。
exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。
5.3 ZeroMQ
号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。ZMQ用于node与node间的通信,node可以是主机或者是进程。
引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。现在还未看到它们的成功。但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。ZMQ让编写高性能网络应用程序极为简单和有趣。”
特点是:
高性能,非持久化;
跨平台:支持Linux、Windows、OS X等。
多语言支持; C、C++、Java、.NET、Python等30多种开发语言。
可单独部署或集成到应用中使用;
可作为Socket通信库使用。
与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。
ZeroMQ高性能设计要点:
1、无锁的队列模型
对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。
2、批量处理的算法
对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。
3、多核下的线程绑定,无须CPU切换
区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。
5.4 Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。
Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。(文件追加的方式写入数据,过期的数据定期删除)
高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
支持通过Kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
Kafka相关概念
Broker
Kafka集群包含一个或多个服务器,这种服务器被称为broker[5]
Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
Partition
Parition是物理上的概念,每个Topic包含一个或多个Partition.
Procer
负责发布消息到Kafka broker
Consumer
消息消费者,向Kafka broker读取消息的客户端。
Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。

Ⅶ 一般项目为了解决什么问题而使用redis

redis是内存数据库,访问速度非常快,所以能够解决的也都是这些缓存类型的问题,如下:
1、会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
2、全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
3、队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。

Ⅷ python分布式爬虫是什么意思

一、分布式爬虫架构

在了解分布式爬虫架构之前,首先回顾一下Scrapy的架构,如下图所示。

我们需要做的就是在多台主机上同时运行爬虫任务协同爬取,而协同爬取的前提就是共享爬取队列。这样各台主机就不需要各自维护爬取队列,而是从共享爬取队列存取Request。但是各台主机还是有各自的Scheler和Downloader,所以调度和下载功能分别完成。如果不考虑队列存取性能消耗,爬取效率还是会成倍提高。

二、维护爬取队列

那么这个队列用什么来维护?首先需要考虑的就是性能问题。我们自然想到的是基于内存存储的Redis,它支持多种数据结构,例如列表(List)、集合(Set)、有序集合(Sorted Set)等,存取的操作也非常简单。

Redis支持的这几种数据结构存储各有优点。

  • 列表有lpush()、lpop()、rpush()、rpop()方法,我们可以用它来实现先进先出式爬取队列,也可以实现先进后出栈式爬取队列。

  • 集合的元素是无序的且不重复的,这样我们可以非常方便地实现随机排序且不重复的爬取队列。

  • 有序集合带有分数表示,而Scrapy的Request也有优先级的控制,我们可以用它来实现带优先级调度的队列。

  • 我们需要根据具体爬虫的需求来灵活选择不同的队列。

    三、如何去重

    Scrapy有自动去重,它的去重使用了Python中的集合。这个集合记录了Scrapy中每个Request的指纹,这个指纹实际上就是Request的散列值。我们可以看看Scrapy的源代码,如下所示:


    importhashlib
    defrequest_fingerprint(request, include_headers=None):
    ifinclude_headers:
    include_headers = tuple(to_bytes(h.lower())
    forhinsorted(include_headers))
    cache = _fingerprint_cache.setdefault(request, {})
    ifinclude_headersnotincache:
    fp = hashlib.sha1()
    fp.update(to_bytes(request.method))
    fp.update(to_bytes(canonicalize_url(request.url)))
    fp.update(request.bodyorb'')
    ifinclude_headers:
    forhdrininclude_headers:
    ifhdrinrequest.headers:
    fp.update(hdr)
    forvinrequest.headers.getlist(hdr):
    fp.update(v)
    cache[include_headers] = fp.hexdigest()
    returncache[include_headers]

    request_fingerprint()就是计算Request指纹的方法,其方法内部使用的是hashlib的sha1()方法。计算的字段包括Request的Method、URL、Body、Headers这几部分内容,这里只要有一点不同,那么计算的结果就不同。计算得到的结果是加密后的字符串,也就是指纹。每个Request都有独有的指纹,指纹就是一个字符串,判定字符串是否重复比判定Request对象是否重复容易得多,所以指纹可以作为判定Request是否重复的依据。

    那么我们如何判定重复呢?Scrapy是这样实现的,如下所示:


    def__init__(self):
    self.fingerprints = set()

    defrequest_seen(self, request):
    fp = self.request_fingerprint(request)
    iffpinself.fingerprints:
    returnTrue
    self.fingerprints.add(fp)

    在去重的类RFPDupeFilter中,有一个request_seen()方法,这个方法有一个参数request,它的作用就是检测该Request对象是否重复。这个方法调用request_fingerprint()获取该Request的指纹,检测这个指纹是否存在于fingerprints变量中,而fingerprints是一个集合,集合的元素都是不重复的。如果指纹存在,那么就返回True,说明该Request是重复的,否则这个指纹加入到集合中。如果下次还有相同的Request传递过来,指纹也是相同的,那么这时指纹就已经存在于集合中,Request对象就会直接判定为重复。这样去重的目的就实现了。

    Scrapy的去重过程就是,利用集合元素的不重复特性来实现Request的去重。

    对于分布式爬虫来说,我们肯定不能再用每个爬虫各自的集合来去重了。因为这样还是每个主机单独维护自己的集合,不能做到共享。多台主机如果生成了相同的Request,只能各自去重,各个主机之间就无法做到去重了。

    那么要实现去重,这个指纹集合也需要是共享的,Redis正好有集合的存储数据结构,我们可以利用Redis的集合作为指纹集合,那么这样去重集合也是利用Redis共享的。每台主机新生成Request之后,把该Request的指纹与集合比对,如果指纹已经存在,说明该Request是重复的,否则将Request的指纹加入到这个集合中即可。利用同样的原理不同的存储结构我们也实现了分布式Reqeust的去重。

    四、防止中断

    在Scrapy中,爬虫运行时的Request队列放在内存中。爬虫运行中断后,这个队列的空间就被释放,此队列就被销毁了。所以一旦爬虫运行中断,爬虫再次运行就相当于全新的爬取过程。

    要做到中断后继续爬取,我们可以将队列中的Request保存起来,下次爬取直接读取保存数据即可获取上次爬取的队列。我们在Scrapy中指定一个爬取队列的存储路径即可,这个路径使用JOB_DIR变量来标识,我们可以用如下命令来实现:


    scrapy crawl spider -s JOB_DIR=crawls/spider

    更加详细的使用方法可以参见官方文档,链接为:https://doc.scrapy.org/en/latest/topics/jobs.html。

    在Scrapy中,我们实际是把爬取队列保存到本地,第二次爬取直接读取并恢复队列即可。那么在分布式架构中我们还用担心这个问题吗?不需要。因为爬取队列本身就是用数据库保存的,如果爬虫中断了,数据库中的Request依然是存在的,下次启动就会接着上次中断的地方继续爬取。

    所以,当Redis的队列为空时,爬虫会重新爬取;当Redis的队列不为空时,爬虫便会接着上次中断之处继续爬取。

    五、架构实现

    我们接下来就需要在程序中实现这个架构了。首先实现一个共享的爬取队列,还要实现去重的功能。另外,重写一个Scheer的实现,使之可以从共享的爬取队列存取Request。

    幸运的是,已经有人实现了这些逻辑和架构,并发布成叫Scrapy-Redis的Python包。接下来,我们看看Scrapy-Redis的源码实现,以及它的详细工作原理

热点内容
oicq服务器地址 发布:2025-01-13 17:34:19 浏览:928
默认管理密码是什么 发布:2025-01-13 17:33:33 浏览:443
系列影视广告文案脚本 发布:2025-01-13 17:31:57 浏览:792
防盗器编程 发布:2025-01-13 17:24:39 浏览:899
联通电信服务器怎么不卡顿 发布:2025-01-13 17:21:30 浏览:821
科沃兹低配可以升级哪些配置 发布:2025-01-13 17:09:26 浏览:330
android判断数据库是否存在 发布:2025-01-13 17:08:17 浏览:333
ie脚本运行错误 发布:2025-01-13 17:08:05 浏览:623
python中或者怎么表示 发布:2025-01-13 16:32:33 浏览:291
易达加密锁 发布:2025-01-13 16:27:23 浏览:516