当前位置:首页 » 编程语言 » java的四种引用

java的四种引用

发布时间: 2024-09-05 20:48:07

A. java内部类的修饰符有哪些

一、内部类可以为四种:

⒈ 静态内部类

⒉ 成员内部类

⒊ 局部内部类


匿名内部类几种内部类的共性:

A、内部类仍然是一个独立的类,在编译之后会内部类会被编译成独立的.class文件,但是前面冠以外部类的类命和$符号。

B、内部类不能用普通的方式访问。内部类是外部类的一个成员,因此内部类可以自由地访问外部类的成员变量,无论是否是private的。

1、静态嵌套类:从技术上讲,静态嵌套类不属于内部类。因为内部类与外部类共享一种特殊关系,更确切地说是对实例的共享关系。而静态嵌套类则没有上述关系。它只是位置在另一个类的内部,因此也被称为顶级嵌套类。静态的含义是该内部类可以像其他静态成员一样,没有外部类对象时,也能够访问它。静态嵌套类不能访问外部类的成员和方法。 class Outer{ static class Inner{} } class Test { public static void main(String[] args){ Outer.Inner n = new Outer.Inner(); } }

2、成员内部类:形式如下
class Outer { class Inner{} }
编译上述代码会产生两个文件:Outer.class和Outer$Inner.class。成员内部类内不允许有任何静态声明!下面代码不能通过编译。
class Inner{ static int a = 10;
}能够访问成员内部类的唯一途径就是通过外部类的对象!

A、从外部类的非静态方法中实例化内部类对象。 class Outer { private
int i = 10; public void makeInner(){ Inner in = new Inner();
in.seeOuter(); } class Inner{ public void seeOuter(){
System.out.print(i); } }
}表面上,我们并没有创建外部类的对象就实例化了内部类对象,和上面的话矛盾。事实上,如果不创建外部类对象也就不可能调用makeInner()方法,所以到头来还是要创建外部类对象的。可能试图把makeInner()方法修饰为静态方法,即static
public void
makeInner()。这样不创建外部类就可以实例化外部类了!但是在一个静态方法里能访问非静态成员和方法吗?显然不能。它没有this引用。没能跳出那条规则!但是如果在这个静态方法中实例化一个外部类对象,再用这个对象实例化外部类完全可以!也就是下一条的内容。

B、从外部类的静态方法中实例化内部类对象。
class Outer { private int i = 10; class Inner{ public void seeOuter(){
System.out.print(i);
} } public static void main(String[] args) { Outer out = new Outer();
Outer.Inner in = out.new Inner(); //Outer.Inner in = new Outer().new
Inner(); in.seeOuter(); }
}被注释掉的那行是它上面两行的合并形式,一条简洁的语句。对比一下:在外部类的非静态方法中实例化内部类对象是普通的new方式:Inner in =
new Inner();在外部类的静态方法中实例化内部类对象,必须先创建外部类对象:Outer.Inner
in = new Outer().new
Inner();

C、内部类的this引用。普通的类可以用this引用当前的对象,内部类也是如此。但是假若内部类想引用外部类当前的对象呢?用“外部类名”.this;的形式,如下例的Outer.this。
class Outer { class Inner{ public void seeOuter(){
System.out.println(this); System.out.println(Outer.this); } }
}

D、成员内部类的修饰符。对于普通的类,可用的修饰符有final、abstract、strictfp、public和默认的包访问。但是成员内部类更像一个成员变量和方法。可用的修饰符有:final、abstract、public、private、protected、strictfp和static。一旦用static修饰内部类,它就变成静态内部类了。

3、方法内部类:顾名思义,把类放在方法内。
class Outer { public void doSomething(){ class Inner{ public void
seeOuter(){ } } }
}

A、方法内部类只能在定义该内部类的方法内实例化,不可以在此方法外对其实例化。

B、方法内部类对象不能使用该内部类所在方法的非final局部变量。因为方法的局部变量位于栈上,只存在于该方法的生命期内。当一个方法结束,其栈结构被删除,局部变量成为历史。但是该方法结束之后,在方法内创建的内部类对象可能仍然存在于堆中!例如,如果对它的引用被传递到其他某些代码,并存储在一个成员变量内。正因为不能保证局部变量的存活期和方法内部类对象的一样长,所以内部类对象不能使用它们。下面是完整的例子:
class Outer { public void doSomething(){ final int a =10; class Inner{
public void seeOuter(){ System.out.println(a); } } Inner in = new
Inner(); in.seeOuter(); } public static void main(String[] args) { Outer
out = new Outer(); out.doSomething(); }
}

C、方法内部类的修饰符。与成员内部类不同,方法内部类更像一个局部变量。可以用于修饰方法内部类的只有final和abstract。

D、静态方法内的方法内部类。静态方法是没有this引用的,因此在静态方法内的内部类遭受同样的待遇,即:只能访问外部类的静态成员。

4、匿名内部类:顾名思义,没有名字的内部类。表面上看起来似乎有名字,实际那不是名字。

A、继承式的匿名内部类。
class Car { public void drive(){ System.out.println("Driving a car!"); }
} class Test{ public static void main(String[] args) { Car car = new
Car(){ public void drive(){ System.out.println("Driving another car!"); }
}; car.drive(); } }结果输出了:Driving another
car!
Car引用变量不是引用Car对象,而是Car匿名子类的对象。建立匿名内部类的关键点是重写父类的一个或多个方法。再强调一下,是重写父类的方法,而不是创建新的方法。因为用父类的引用不可能调用父类本身没有的方法!创建新的方法是多余的。简言之,参考多态。B、接口式的匿名内部类。
interface Vehicle { public void drive(); } class Test{ public static
void main(String[] args) { Vehicle v = new Vehicle(){
public void drive(){ System.out.println("Driving a car!"); } };
v.drive(); }
}上面的代码很怪,好像是在实例化一个接口。事实并非如此,接口式的匿名内部类是实现了一个接口的匿名类。而且只能实现一个接口。

C、参数式的匿名内部类。class
Bar{ void doStuff(Foo f){}}interface Foo{ void foo();}class Test{
static void go(){ Bar b = new Bar();
b.doStuff(new Foo(){ public void foo(){ System.out.println("foofy"); }
});
}}

二、权限修饰符:public、protected、default、private。

修饰符:abstract、static、final。

public 使用对象:最广,类、接口、变量、方法。

protected使用对象:变量、方法 注意:不能修饰类(外部类)。

default 使用对象:类、接口、变量、方法。(即缺省,什么也不写)。

private 使用对象:变量、方法 注意:不能修饰类(外部类)。

abstract使用对象:类、接口、方法。

static 使用对象:类、变量、方法、初始化函数(注意:修饰类时只能修饰 内部类 )。

final 使用对象:类、变量、方法。

transient:告诉编译器,在类对象序列化的时候,此变量不需要持久保存

volatile:指出可能有多个线程修改此变量,要求编译器优化以保证对此变量的修改能够被正确的处理。

native:用该修饰符定义的方法在类中没有实现,而大多数情况下该方法的实现是用C、C++编写的。

synchronized:修饰方法,多线程的支持。

B. JAVA的基本数据类型和引用数据类型的区别

一、作用的不同

1、引用类型一般都是通过new关键字创建对象,然后把这个对象赋予给相应的变量,最常用的引用类型是String类型,它也比较特殊,可以直接通过关键字new来创建对象,也可以通过字符串直接赋值,比如:

Strings=newString("abc");

Strings="abc";

2、基本类型就是直接赋顷扒值就可以了,比如:

inta=123;

floatb=123.0;

boolean=true;

二、参数方面传递的不同

引用类型是引用传递

基本类型是值传递

三、比较方面的不同

引用类型比较的是引用地址(没有重写equals方法)

基本类型比较的是值

五、类雀亩昌型的不同

1、引用类型分为四种

强引用(StrongReference)

软引用(SoftRefernce)

弱引用(WeakReference)

虚引用(PhantomReference)

强引用-StrongReference

2、八种基本类型

整型byte8位

整型耐岩short16位

整型int32位

整型long64位

浮点型float32位

浮点型double64位

字符型char16位

布尔型boolean位数不确定

C. java中的虚引用,有什么作用

从JDK1.2版本开始,把对象的引用分为四种级别,从而使程序能更加灵活的控制对象的生命周期。这四种级别由高到低依次为:强引用、软引用、弱引用和虚引用。

强引用
如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空 间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

软引用(SoftReference)
如果一个对象只具有软引用,那就类似于可有可物的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存

弱引用(WeakReference)
如果一个对象只具有弱引用,那就类似于可有可物的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

虚引用(PhantomReference)
"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。虚引用主要用来跟踪对象被垃圾回收的活动。

虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃 圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是 否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
建立虚引用之后通过get方法返回结果始终为null,通过源代码你会发现,虚引用通向会把引用的对象写进referent,只是get方法返回结果为null.先看一下和gc交互的过程在说一下他的作用.

D. java四种引用,强软弱虚 有大神在吗

Java中四种引用的特点:

  1. 强引用(StrongReference)

当我们使用 new 这个关键字创建对象时创建出来的对象就是强引用(new出来对象为强引用) 如Object obj = new Object() 这个obj就是一个强引用了,如果一个对象具有强引用。垃圾回收器就不会回收有强引用的对象。如当jvm内存不足时,具备强引用的对象,虚拟机宁可会抛出OutOfMemoryError(内存空间不足),使程序终止,也不会靠垃圾回收器去回收该对象来解决内存。

2.软引用(SoftReference)

如果一个对象只具有软引用,那就类似于可有可物的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。

软引用的作用:软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。

3.弱引用(WeakReference)

如果一个对象只具有弱引用,那就类似于可有可物的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。

4.虚引用(PhantomReference)

“虚引用”顾名思义,就是形同虚设,和其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有 虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。

虚引用主要用来跟踪对象被垃圾回收器回收的活动。虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之 关联的引用队列中。

ReferenceQueue queue = new ReferenceQueue ();

//虚引用对象

PhantomReference pr = new PhantomReference (object, queue);

程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。如果程序发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

如果你还想深入了解的话给你推荐一个博文地址:

网页链接

E. java三个引用类型

四种引用类型
所以在 JDK.1.2 之后,Java 对引用的概念进行了扩充,将引用分为了:强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)4 种,这 4 种引用的强度依次减弱。

一,强引用
Java中默认声明的就是强引用,比如:

Object obj = new Object(); //只要obj还指向Object对象,Object对象就不会被回收
obj = null; //手动置null
只要强引用存在,垃圾回收器将永远不会回收被引用的对象,哪怕内存不足时,JVM也会直接抛出OutOfMemoryError,不会去回收。如果想中断强引用与对象之间的联系,可以显示的将强引用赋值为null,这样一来,JVM就可以适时的回收对象了

二,软引用
软引用是用来描述一些非必需但仍有用的对象。在内存足够的时候,软引用对象不会被回收,只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。这种特性常常被用来实现缓存技术,比如网页缓存,图片缓存等。
在 JDK1.2 之后,用java.lang.ref.SoftReference类来表示软引用。

下面以一个例子来进一步说明强引用和软引用的区别:
在运行下面的Java代码之前,需要先配置参数 -Xms2M -Xmx3M,将 JVM 的初始内存设为2M,最大可用内存为 3M。

首先先来测试一下强引用,在限制了 JVM 内存的前提下,下面的代码运行正常

public class TestOOM {

public static void main(String[] args) {
testStrongReference();
}
private static void testStrongReference() {
// 当 new byte为 1M 时,程序运行正常
byte[] buff = new byte[1024 * 1024 * 1];
}
}
但是如果我们将

byte[] buff = new byte[1024 * 1024 * 1];
替换为创建一个大小为 2M 的字节数组

byte[] buff = new byte[1024 * 1024 * 2];
则内存不够使用,程序直接报错,强引用并不会被回收

接着来看一下软引用会有什么不一样,在下面的示例中连续创建了 10 个大小为 1M 的字节数组,并赋值给了软引用,然后循环遍历将这些对象打印出来。

public class TestOOM {
private static List<Object> list = new ArrayList<>();
public static void main(String[] args) {
testSoftReference();
}
private static void testSoftReference() {
for (int i = 0; i < 10; i++) {
byte[] buff = new byte[1024 * 1024];
SoftReference<byte[]> sr = new SoftReference<>(buff);
list.add(sr);
}

System.gc(); //主动通知垃圾回收

for(int i=0; i < list.size(); i++){
Object obj = ((SoftReference) list.get(i)).get();
System.out.println(obj);
}

}

}
打印结果:

我们发现无论循环创建多少个软引用对象,打印结果总是只有最后一个对象被保留,其他的obj全都被置空回收了。
这里就说明了在内存不足的情况下,软引用将会被自动回收。
值得注意的一点 , 即使有 byte[] buff 引用指向对象, 且 buff 是一个strong reference, 但是 SoftReference sr 指向的对象仍然被回收了,这是因为Java的编译器发现了在之后的代码中, buff 已经没有被使用了, 所以自动进行了优化。
如果我们将上面示例稍微修改一下:

private static void testSoftReference() {
byte[] buff = null;

for (int i = 0; i < 10; i++) {
buff = new byte[1024 * 1024];
SoftReference<byte[]> sr = new SoftReference<>(buff);
list.add(sr);
}

System.gc(); //主动通知垃圾回收

for(int i=0; i < list.size(); i++){
Object obj = ((SoftReference) list.get(i)).get();
System.out.println(obj);
}

System.out.println("buff: " + buff.toString());
}

则 buff 会因为强引用的存在,而无法被垃圾回收,从而抛出OOM的错误。

如果一个对象惟一剩下的引用是软引用,那么该对象是软可及的(softly reachable)。垃圾收集器并不像其收集弱可及的对象一样尽量地收集软可及的对象,相反,它只在真正 “需要” 内存时才收集软可及的对象。

三,弱引用
弱引用的引用强度比软引用要更弱一些,无论内存是否足够,只要 JVM 开始进行垃圾回收,那些被弱引用关联的对象都会被回收。在 JDK1.2 之后,用 java.lang.ref.WeakReference 来表示弱引用。
我们以与软引用同样的方式来测试一下弱引用:

private static void testWeakReference() {
for (int i = 0; i < 10; i++) {
byte[] buff = new byte[1024 * 1024];
WeakReference<byte[]> sr = new WeakReference<>(buff);
list.add(sr);
}

System.gc(); //主动通知垃圾回收

for(int i=0; i < list.size(); i++){
Object obj = ((WeakReference) list.get(i)).get();
System.out.println(obj);
}
}
打印结果:

可以发现所有被弱引用关联的对象都被垃圾回收了。

四,虚引用
虚引用是最弱的一种引用关系,如果一个对象仅持有虚引用,那么它就和没有任何引用一样,它随时可能会被回收,在 JDK1.2 之后,用 PhantomReference 类来表示,通过查看这个类的源码,发现它只有一个构造函数和一个 get() 方法,而且它的 get() 方法仅仅是返回一个null,也就是说将永远无法通过虚引用来获取对象,虚引用必须要和 ReferenceQueue 引用队列一起使用。

public class PhantomReference<T> extends Reference<T> {
/**
* Returns this reference object's referent. Because the referent of a
* phantom reference is always inaccessible, this method always returns
* <code>null</code>.
*
* @return <code>null</code>
*/
public T get() {
return null;
}
public PhantomReference(T referent, ReferenceQueue<? super T> q) {
super(referent, q);
}
}
那么传入它的构造方法中的 ReferenceQueue 又是如何使用的呢?

五,引用队列(ReferenceQueue)
引用队列可以与软引用、弱引用以及虚引用一起配合使用,当垃圾回收器准备回收一个对象时,如果发现它还有引用,那么就会在回收对象之前,把这个引用加入到与之关联的引用队列中去。程序可以通过判断引用队列中是否已经加入了引用,来判断被引用的对象是否将要被垃圾回收,这样就可以在对象被回收之前采取一些必要的措施。

热点内容
python3字符串格式 发布:2025-01-14 00:43:29 浏览:580
openwrt编译模块 发布:2025-01-14 00:40:25 浏览:383
长江存储中芯国际 发布:2025-01-14 00:33:11 浏览:149
安卓手机怎么样测通路 发布:2025-01-14 00:30:50 浏览:464
uImage编译 发布:2025-01-14 00:23:37 浏览:38
php繁体简体 发布:2025-01-14 00:22:45 浏览:375
雷克萨斯es200哪个配置值得买 发布:2025-01-14 00:14:34 浏览:783
python可以开发游戏吗 发布:2025-01-14 00:14:28 浏览:483
我的世界电脑版决战斗罗服务器怎么玩 发布:2025-01-14 00:14:26 浏览:320
python时序图 发布:2025-01-14 00:10:46 浏览:960