python中的merge
❶ python两个列表进行合并
A=[['A','A1'],['B','A2'],['C','A3'],['D','A4']]
B=[['A','B1'],['B','B2'],['C','B3'],['D','B4']]
C=[['A','C1'],['B','C2'],['C','C3'],['D','C4']]
D=[['A','D1'],['B','D2'],['C','D3'],['D','D4']]
arr=[A,B,C,D]
dic_all={x[0][0]:[y[1]foryinx]forxinzip(*arr)}
list_all=[[x[0][0]]+[y[1]foryinx]forxinzip(*arr)]
if__name__=='__main__':
print(list_all)
print(dic_all)
结果:
[['A','A1','B1','C1','D1'],['B','A2','B2','C2','D2'],['C','A3','B3','C3','D3'],['D','A4','B4','C4','D4']]
{'D':['A4','B4','C4','D4'],'A':['A1','B1','C1','D1'],'C':['A3','B3','C3','D3'],'B':['A2','B2','C2','D2']}
❷ python可以做数据分析,好处是什么呢怎么学习
链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....
❸ Python数据分析师主要做什么Python基础
伴随着大数据时代的到来,Python的热度居高不下,已成为职场人士必备的技能,它不仅可以从事网络爬虫、人工智能、Web开发、游戏开发等工作,还是数据分析的首选语言。那么问题来了,利用Python数据分析可以做什么呢?简单来讲,可以做的事情有很多,具体如下。
第一、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Lsnull是Python中检查空置的函数,你可以对整个数据进行检查,也可以单独对某一列进行空置检查,返回的结果是逻辑值,包括空置返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。
第二,数据表清洗
Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包括空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是asstype函数,用来更改数据格式,Rename是更改名称的函数,drop_plicate函数函数重复值,replace函数实现数据转换。
第三,数据预处理
数据预处理是对清洗完的数据进行整理以便后期统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组以及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。
第四,数据提取
主要是使用三个函数:loc、iloc和ix,其中loc函数按标准值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提取数据意外,还可以按照具体的条件进行提取。
第五,数据筛选汇总
Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。
❹ 数据分析员用python做数据分析是怎么回事,需要用到python中的那些内容,具体是怎么操作的
最近,Analysis with Programming加入了Planet Python。我这里来分享一下如何通过Python来开始数据分析。具体内容如下:
数据导入
导入本地的或者web端的CSV文件;
数据变换;
数据统计描述;
假设检验
单样本t检验;
可视化;
创建自定义函数。
数据导入
1
这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:
import pandas as pd
# Reading data locally
df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')
# Reading data from web
data_url = "https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
df = pd.read_csv(data_url)
为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。
1
既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据(下图)
对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理
9
plt.show(sns.lmplot("Benguet", "Ifugao", df))
在Python中,我们使用def函数来实现一个自定义函数。例如,如果我们要定义一个两数相加的函数,如下即可:
def add_2int(x, y):
return x + y
print add_2int(2, 2)
# OUTPUT
4
顺便说一下,Python中的缩进是很重要的。通过缩进来定义函数作用域,就像在R语言中使用大括号{…}一样。这有一个我们之前博文的例子:
产生10个正态分布样本,其中和
基于95%的置信度,计算和;
重复100次; 然后
计算出置信区间包含真实均值的百分比
Python中,程序如下:
import numpy as np
import scipy.stats as ss
def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
m = np.zeros((rep, 4))
for i in range(rep):
norm = np.random.normal(loc = mu, scale = sigma, size = n)
xbar = np.mean(norm)
low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
if (mu > low) & (mu < up):
rem = 1
else:
rem = 0
m[i, :] = [xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
上述代码读起来很简单,但是循环的时候就很慢了。下面针对上述代码进行了改进,这多亏了Python专家
import numpy as np
import scipy.stats as ss
def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))
xbar = norm.mean(1)
low = xbar - scaled_crit
up = xbar + scaled_crit
rem = (mu > low) & (mu < up)
m = np.c_[xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
数据变换
创建自定义函数
❺ 在python中,如i=
1 #python ++i,-+i,+-i.--i
2
3 #Author : Hongten
4 #Mailto : [email protected]
5 #Blog : http://www.cnblogs.com/hongten
6 #QQ : 648719819
7 #Version : 1.0
8 #Create : 2013-08-30
9
10 #初始化所需列表
11 testA = []
12 testB = []
13 testC = []
14 testD = []
15 testE = []
16 testF = []
17 testG = []
18 testH = []
19
20 for a in range(-5, 5, 1):
21 testA.append(++(a)) #++a
22 testB.append(-+(a)) #-+a
23 testC.append(+-(a)) #+-a
24 testD.append(--(a)) #--a
25 testE.append(+(+(a))) #+(+a)
26 testF.append(-(+(a))) #-(+a)
27 testG.append(+(-(a))) #+(-a)
28 testH.append(-(-(a))) #-(-a)
29
30 print('++i : {}'.format(testA))
31 print('+(+i) : {}'.format(testE))
32 print('可以看出:++i和+(+i)输出结果是一样的,说明他们是等效的\n')
33 print('-+i : {}'.format(testB))
34 print('-(+i) : {}'.format(testF))
35 print('可以看出:-+i和-(+i)输出结果是一样的,说明他们是等效的\n')
36 print('+-i : {}'.format(testC))
37 print('+(-i) : {}'.format(testG))
38 print('可以看出:+-i和+(-i)输出结果是一样的,说明他们是等效的\n')
39 print('--i : {}'.format(testD))
40 print('-(-i) : {}'.format(testH))
41 print('可以看出:--i和-(-i)输出结果是一样的,说明他们是等效的\n')
42
43 test_plus = []
44 test_sub = []
45
46 #使用b += 1实现自增
47 for b in range(-5, 5, 1):
48 b += 1
49 test_plus.append(b)
50
51 #使用c -= 1实现自减
52 for c in range(-5, 5, 1):
53 c -= 1
54 test_sub.append(c)
55
56 print('#' * 50)
57 print('i += 1 : {}'.format(test_plus))
58 print('i -= 1 : {}'.format(test_sub))
59 print('我们可以使用:i += 1, i -= 1来实现递增,递减。')