当前位置:首页 » 编程语言 » python数据分析与数据可视化

python数据分析与数据可视化

发布时间: 2024-06-21 20:46:48

‘壹’ python中数据可视化经典库有哪些

Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。

matplotlib

是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。

pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。

优点:绘图质量高,可绘制出版物质量级别的图形。代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。

优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。

上面是我的回答,希望对您有所帮助!

‘贰’ Python数据分析:可视化

本文是《数据蛙三个月强化课》的第二篇总结教程,如果想要了解 数据蛙社群 ,可以阅读 给DataFrog社群同学的学习建议 。温馨提示:如果您已经熟悉python可视化内容,大可不必再看这篇文章,或是之挑选部分文章

对于我们数据裂搭羡分析师来说,不仅要自己明白数据背后的含义,而且还要给老板更直观的展示数据的意义。所以,对于这项不可缺少的技能,让我们来一起学习下吧。

画图之前,我们先导入包和生成数据集

我们先看下所用的数据集

折线图是我们观察枝历趋势常用的图形,可以看出数据随着某个变量的变化趋势,默认情况下参数 kind="line" 表示图的类型为折线图。

对于分类数据这种离散数据,需要查看数据是如何在各个类别之间分布的,这时候就可以使用柱状图。我们为每个类别画出一个柱子。此时,可以将参数 kind 设置为 bar 。

条形图就是将竖直的柱状图翻转90度得到的图形。与柱状图一样,条形图也可以有一组或多种多组数据。

水平条形图在类别名称很长的时候非常方便,因为文字是从左到右书写的,与大多数用户的阅读顺序一致,这使得我们的图形容易阅读。而柱状图在类别名称很长的时候是没有办法很好的展示的。

直方图是柱形图的特殊形式,当我们想要看数据集的分布情况时,选择直方图。直方图的变量划分至不同的范围,然后在不同的范围中统计计数。在直方图中,柱子之间的连续的,连续的柱子暗示数值上的连续。

箱线图用来展示数据集的描述统计信息,也就是[四分位数],线的上下两端表示某组数据的最大值和最小值。箱子的上下两端表示这组数据中排在前25%位置和75%位置的数值。箱中间的横线表示中位数。此时可以将参数 kind 设置为 box。

如果想要画出散点图,可以将参数 kind 设置为 scatter,同时需要指定 x 和 y。通过散点图可以探索变量之间的关系。

饼图是用面积表示一组数据的占比,此时可以将参数 kind 设置为 pie。

我们刚开始学习的同学,肆拍最基本应该明白什么数据应该用什么图形来展示,同学们来一起总结吧。

‘叁’ 数据分析员用python做数据分析是怎么回事,需要用到python中的那些内容,具体是怎么操作的

最近,Analysis with Programming加入了Planet Python。我这里来分享一下如何通过Python来开始数据分析。具体内容如下:


数据导入

导入本地的或者web端的CSV文件;

数据变换;

数据统计描述;

假设检验

单样本t检验;

可视化;

创建自定义函数。

数据导入

  • 1

    这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:

    import pandas as pd

    # Reading data locally

    df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')

    # Reading data from web

    data_url = "https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"

    df = pd.read_csv(data_url)

    为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。

  • 数据变换

  • 1

    既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据(下图)

    对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理

  • 9

    plt.show(sns.lmplot("Benguet", "Ifugao", df))

  • 创建自定义函数

  • 在Python中,我们使用def函数来实现一个自定义函数。例如,如果我们要定义一个两数相加的函数,如下即可:

    def add_2int(x, y):

    return x + y

    print add_2int(2, 2)

    # OUTPUT

    4

  • 顺便说一下,Python中的缩进是很重要的。通过缩进来定义函数作用域,就像在R语言中使用大括号{…}一样。这有一个我们之前博文的例子:

    产生10个正态分布样本,其中和

    基于95%的置信度,计算和;

    重复100次; 然后

    计算出置信区间包含真实均值的百分比

    Python中,程序如下:

    import numpy as np

    import scipy.stats as ss

    def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

    m = np.zeros((rep, 4))

    for i in range(rep):

    norm = np.random.normal(loc = mu, scale = sigma, size = n)

    xbar = np.mean(norm)

    low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    if (mu > low) & (mu < up):

    rem = 1

    else:

    rem = 0

    m[i, :] = [xbar, low, up, rem]

    inside = np.sum(m[:, 3])

    per = inside / rep

    desc = "There are " + str(inside) + " confidence intervals that contain "

    "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

    return {"Matrix": m, "Decision": desc}

  • 上述代码读起来很简单,但是循环的时候就很慢了。下面针对上述代码进行了改进,这多亏了Python专家

    import numpy as np

    import scipy.stats as ss

    def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

    scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))

    xbar = norm.mean(1)

    low = xbar - scaled_crit

    up = xbar + scaled_crit

    rem = (mu > low) & (mu < up)

    m = np.c_[xbar, low, up, rem]

    inside = np.sum(m[:, 3])

    per = inside / rep

    desc = "There are " + str(inside) + " confidence intervals that contain "

    "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

    return {"Matrix": m, "Decision": desc}

‘肆’ python数据分析的一般步骤是什么

下面是用python进行数据分析的一般步骤:
一:数据抽取
从外部源数据中获取数据
保存为各种格式的文件、数据库
使用Scrapy爬虫等技术
二:数据加载
从数据库、文件中提取数据,变成DataFrame对象
pandas库的文件读取方法
三:数据处理
数据准备:
对DataFrame对象(多个)进行组装、合并等操作
pandas库的操作
数据转化:
类型转化、分类(面元等)、异常值检测、过滤等
pandas库的操作
数据聚合:
分组(分类)、函数处理、合并成新的对象
pandas库的操作
四:数据可视化
将pandas的数据结构转化为图表的形式
matplotlib库
五:预测模型的创建和评估
数据挖掘的各种算法
关联规则挖掘、回归分析、聚类、分类、时序挖掘、序列模式挖掘等
六:部署(得出结果)
从模型和评估中获得知识
知识的表示形式:规则、决策树、知识基、网络权值
更多技术请关注python视频教程。

‘伍’ 如何评价利用python制作数据采集,计算,可视化界面呢

先来设置两个url地址,第一个用于第一次访问,这样可以获得网站服务器发来的cookie,第二个网址是用于登陆的地址
引入两个模块,cookielib和urllib2
接着,我们安装一个cookie处理器,代码如下,这个代码很多人不太能读懂,其实你会用就可以了,他们就是这个固定的形式,顶多改改变量的名字。你复制下来以后自己用就可以了,用多了,你再去看代码的意义,你就都懂了。
然后我们先访问一下网站,获得一个cookie,你不用管这个cookie该怎么弄,前面设置的cookie处理器会自动处理。
接着,我们写一下postdata,也就是你要post的数据,因为我们打算登陆网站,所以postdata里肯定有用户名和密码,那么怎么知道该怎么写postdata呢?看你抓包得到的post数据。下面第一幅图是httpwatch抓包截图,点击postdata,看到post的数据,然后我们看第二幅图,就是python的写法。你自己感受一下。
写完postdata以后,我们 要将postdata转码一下,让服务器可以解读postdata数据
接着设置headers信息,headers也是抓包得到的。同样的方式,你去写header内的信息
然后我们通过request方法来登陆网站,并返回数据,返回的数据存储在request中
通过rulopen方法和read方法来读取数据,并打印出来。
我们看到输出的结果,这说明我们虽然正确的模拟了登陆网站需要的post信息,但是没有考虑到登陆网站是需要验证码的,后期我们会看到如何处理验证码,如果你拿这个教程去处理没有验证码的登陆问题,那么你现在已经成功了。

热点内容
linux修改远程端口 发布:2024-11-26 22:35:53 浏览:981
卡通农场服务器怎么连不上 发布:2024-11-26 22:26:54 浏览:194
马嘉祺密码1的答案是什么 发布:2024-11-26 22:19:16 浏览:954
linux常用命令vi 发布:2024-11-26 22:17:40 浏览:4
sqlserver教材 发布:2024-11-26 22:07:21 浏览:632
安卓p图工具哪个好 发布:2024-11-26 22:02:25 浏览:320
税控盘密码在哪里改 发布:2024-11-26 21:55:54 浏览:611
美版安卓系统为什么连不了网 发布:2024-11-26 21:51:36 浏览:613
用公司服务器搭建网站 发布:2024-11-26 21:42:00 浏览:357
忘记密码魅族手机如何清除数据 发布:2024-11-26 21:34:17 浏览:156