当前位置:首页 » 编程语言 » 分水岭算法python

分水岭算法python

发布时间: 2024-05-28 14:56:25

㈠ 图像分割

图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。

图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。

基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:
若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。

阈值分割方法实际上是输入图像f到输出图像g的如下变换:

其中,T为阈值,对于物体的图像元素g(i,j)=1,对于背景的图像元素g(i,j)=0。

由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值逐个进行比较,而且像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
阈值分割的优点是计算简单、运算效率较高、速度快。有着各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。

阈值处理技术参看:

区域分割是讲图像按照相似性准则分成不同的区域,主要包括区域增长,区域分裂合并和分水岭等几种类型。

区域生长是一种串行区域分割的图像分割方法。区域生长是指从某个像素出发,按照一定的准则,逐步加入邻近像素,当满足一定的条件时,区域生长终止。区域生长的好坏决定于1. 初始点(种子点)的选取。 2. 生长准则。 3. 终止条件 。区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。

区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。

区域生长需要选择一组能正确代表所需区域的种子像素,确定在生长过程中的相似性准则,制定让生长停止的条件或准则。相似性准则可以是灰度级、彩色、纹理、梯度等特性。选取的种子像素可以是单个像素,也可以是包含若干个像素的小区域。大部分区域生长准则使用图像的局部性质。生长准则可根据不同原则制定,而使用不同的生长准则会影响区域生长的过程。

图1是区域增长的示例。

区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域(seed point),再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多的区域

区域生长实现的步骤如下:

区域分裂合并算法的基本思想是先确定一个分裂合并的准则,即区域特征一致性的测度,当图像中某个区域的特征不一致时就将该区域分裂成4个相等的子区域,当相邻的子区域满足一致性特征时则将它们合成一个大区域,直至所有区域不再满足分裂合并的条件为止。当分裂到不能再分的情况时,分裂结束,然后它将查找相邻区域有没有相似的特征,如果有就将相似区域进行合并,最后达到分割的作用。在一定程度上区域生长和区域分裂合并算法有异曲同工之妙,互相促进相辅相成的,区域分裂到极致就是分割成单一像素点,然后按照一定的测量准则进行合并,在一定程度上可以认为是单一像素点的区域生长方法。区域生长比区域分裂合并的方法节省了分裂的过程,而区域分裂合并的方法可以在较大的一个相似区域基础上再进行相似合并,而区域生长只能从单一像素点出发进行生长(合并)。

反复进行拆分和聚合以满足限制条件的算法。

令R表示整幅图像区域并选择一个谓词P。对R进行分割的一种方法是反复将分割得到的结果图像再次分为四个区域,直到对任何区域Ri,有P(Ri)=TRUE。这里是从整幅图像开始。如果P(R)=FALSE,就将图像分割为4个区域。对任何区域如果P的值是FALSE.就将这4个区域的每个区域再次分别分为4个区域,如此不断继续下去。这种特殊的分割技术用所谓的四叉树形式表示最为方便(就是说,每个非叶子节点正好有4个子树),这正如图10.42中说明的树那样。注意,树的根对应于整幅图像,每个节点对应于划分的子部分。此时,只有R4进行了进一步的再细分。

如果只使用拆分,最后的分区可能会包含具有相同性质的相邻区域。这种缺陷可以通过进行拆分的同时也允许进行区域聚合来得到矫正。就是说,只有在P(Rj∪Rk)=TRUE时,两个相邻的区域Rj和Rk才能聚合。
前面的讨论可以总结为如下过程。在反复操作的每一步,我们需要做:

可以对前面讲述的基本思想进行几种变化。例如,一种可能的变化是开始时将图像拆分为一组图象块。然后对每个块进一步进行上述拆分,但聚合操作开始时受只能将4个块并为一组的限制。这4个块是四叉树表示法中节点的后代且都满足谓词P。当不能再进行此类聚合时,这个过程终止于满足步骤2的最后的区域聚合。在这种情况下,聚合的区域可能会大小不同。这种方法的主要优点是对于拆分和聚合都使用同样的四叉树,直到聚合的最后一步。

分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。

分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。

分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即

分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。
为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。

为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即

程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。

参考文章:

图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。

图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。

由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好,

在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一像素点的附近,而没有必要指出边缘的精确位置或方向.边缘检测误差通常是指边缘误分类误差,即把假边缘判别成边缘而保留,而把真边缘判别成假边缘而去掉.边缘估计误差是用概率统计模型来描述边缘的位置和方向误差的.我们将边缘检测误差和边缘估计误差区分开,是因为它们的计算方法完全不同,其误差模型也完全不同.

Roberts算子 :边缘定位准,但是对噪声敏感。适用于边缘明显且噪声较少的图像分割。Roberts边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑。经分析,由于Robert算子通常会在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高。

Prewitt算子 :对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。

Sobel算子 :Sobel算子和Prewitt算子都是加权平均,但是Sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远,产生的影响越小。

Isotropic Sobel算子 :加权平均算子,权值反比于邻点与中心点的距离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性。
在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的;另一个是检测垂直平边沿的 。Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直平边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。由于建筑物图像的特殊性,我们可以发现,处理该类型图像轮廓时,并不需要对梯度方向进行运算,所以程序并没有给出各向同性Sobel算子的处理方法。

1971年,R.Kirsch[34]提出了一种能检测边缘方向的Kirsch算子新方法:它使用了8个模板来确定梯度幅度值和梯度的方向。

图像中的每个点都用8个掩模进行卷积,每个掩模对某个特定边缘方向作出最大响应。所有8个方向中的最大值作为边缘幅度图像的输出。最大响应掩模的序号构成了对边缘方向的编码。
Kirsch算子的梯度幅度值用如下公式:

不同检测算子的对比:

参考文章:

文章引用于 木夜溯
编辑 Lornatang
校准 Lornatang

㈡ 图像分割算法总结

       图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。

        接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。

        图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。

        1.基于边缘的图像分割算法:

            有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。

            这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。

             也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下:

可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。

        2.基于区域分割的算法:

            区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。

            基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。

            其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).

            基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:

                unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。

                在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                

        3.基于图的分割算法

            基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。

论文原地址参考: https://arxiv.org/pdf/1707.00243.pdf

整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。

由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

㈢ 帮帮我 我不知道分水岭算法在图像分割中的应用…… 代码,还有别的帮帮我

clear,clc

%三种方法进行分水岭分割
%读入图像
filename='sar1.bmp';
f=imread(filename);
Info=imfinfo(filename);
if Info.BitDepth>8
f=rgb2gray(f);
end
figure,mesh(double(f));%显示图像,类似集水盆地

%方法1:一般分水岭分割,从结果可以看出存在过分割问题
b=im2bw(f,graythresh(f));%二值化,注意应保证集水盆地的值较低(为0),否则就要对b取反
d=bwdist(b); %求零值到最近非零值的距离,即集水盆地到分水岭的距离
l=watershed(-d); %matlab自带分水岭算法,l中的零值即为风水岭
w=l==0; %取出边缘
g=b&~w; %用w作为mask从二值图像中取值
figure
subplot(2,3,1),imshow(f);
subplot(2,3,2),imshow(b);
subplot(2,3,3),imshow(d);
subplot(2,3,4),imshow(l);
subplot(2,3,5),imshow(w);
subplot(2,3,6),imshow(g);

%方法2:使用梯度的两次分水岭分割,从结果可以看出还存在过分割问题(在方法1的基础上改进)
h=fspecial('sobel');%获得纵方向的sobel算子
fd=double(f);
g=sqrt(imfilter(fd,h,'replicate').^2+imfilter(fd,h','replicate').^2);%使用sobel算子进行梯度运算
l=watershed(g);%分水岭运算
wr=l==0;

g2=imclose(imopen(g,ones(3,3)),ones(3,3));%进行开闭运算对图像进行平滑
l2=watershed(g2);%再次进行分水岭运算
wr2=l2==0;
f2=f;
f2(wr2)=255;

figure
subplot(2,3,1),imshow(f);
subplot(2,3,2),imshow(g);
subplot(2,3,3),imshow(l);
subplot(2,3,4),imshow(g2);
subplot(2,3,5),imshow(l2);
subplot(2,3,6),imshow(f2);

%方法3:使用梯度加掩模的三次分水岭算法(在方法2的基础上改进)
h=fspecial('sobel');%获得纵方向的sobel算子
fd=double(f);
g=sqrt(imfilter(fd,h,'replicate').^2+imfilter(fd,h','replicate').^2);%使用sobel算子进行梯度运算
l=watershed(g);%分水岭运算
wr=l==0;

rm=imregionalmin(g); %计算图像的区域最小值定位,该函数仅仅是用来观察为何分水岭算法产生这么多集水盆地
im=imextendedmin(f,2);%上面仅是产生最小值点,而该函数则是得到最小值附近的区域,此处的附近是相差2的区域
fim=f;
fim(im)=175; %将im在原图上标识出,用以观察
lim=watershed(bwdist(im));%再次分水岭计算
em=lim==0;
g2=imimposemin(g,im|em);%在梯度图上标出im和em,im是集水盆地的中心,em是分水岭
l2=watershed(g2); %第三次分水岭计算
f2=f;
f2(l2==0)=255; %从原图对分水岭进行观察
figure
subplot(3,3,1),imshow(f);
subplot(3,3,2),imshow(g);
subplot(3,3,3),imshow(l);
subplot(3,3,4),imshow(im);
subplot(3,3,5),imshow(fim);
subplot(3,3,6),imshow(lim);
subplot(3,3,7),imshow(g2);
subplot(3,3,8),imshow(l2)
subplot(3,3,9),imshow(f2);

㈣ 分水岭算法的原理及相关思想的阐述是什么

首先选择最低的点,就是分水岭中最底的山谷。
然后灌水:
1 . 极值点周围的点也划分到极值点,它们属于一个区域。
2 . 在灌水的过程中根据你设定的阈值,还需要把有的区域合并。
3. 这个过程中有新的局部极值点产生,也是山谷,但不一定是最底的山谷。
最后灌满了水之后,由起始的极值点形成了一个一个的区域。

热点内容
移动存储器是什么 发布:2024-11-27 10:04:08 浏览:876
linux重装linux 发布:2024-11-27 09:46:25 浏览:558
电脑玩云服务器 发布:2024-11-27 09:19:22 浏览:66
苹果什么助手能和安卓互通 发布:2024-11-27 09:18:47 浏览:58
android花屏 发布:2024-11-27 09:18:38 浏览:125
phpnginx负载均衡 发布:2024-11-27 09:18:36 浏览:623
刀片服务器如何设置网络交换机 发布:2024-11-27 09:17:23 浏览:476
eve脚本挖矿 发布:2024-11-27 09:12:25 浏览:566
模板平方算法 发布:2024-11-27 08:56:15 浏览:269
系统缓存文件 发布:2024-11-27 08:52:15 浏览:914