pythonguimac
⑴ python的优点有哪些
优点
简单:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。
易学:Python极其容易上手,因为Python有极其简单的说明文档[10]。
易读、易维护:风格清晰划一、强制缩进
用途广泛
速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。[7]
免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
高层语言:用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。
可移植性:由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基于linux开发的android平台。
解释性:一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。
运行程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码运行 程序。
在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。这使得使用Python更加简单。也使得Python程序更加易于移植。
面向对象:Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。
Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
可扩展性、可扩充性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
Python本身被设计为可扩充的。并非所有的特性和功能都集成到语言核心。Python提供了丰富的API和工具,以便程序员能够轻松地使用C语言、C++、Cython来编写扩充模块。Python编译器本身也可以被集成到其它需要脚本语言的程序内。因此,很多人还把Python作为一种“胶水语言”(glue language)使用。使用Python将其他语言编写的程序进行集成和封装。在Google内部的很多项目,例如Google Engine使用C++编写性能要求极高的部分,然后用Python或Java/Go调用相应的模块。《Python技术手册》的作者马特利(Alex Martelli)说:“这很难讲,不过,2004 年,Python 已在Google内部使用,Google 召募许多 Python 高手,但在这之前就已决定使用Python,他们的目的是 Python where we can, C++ where we must,在操控硬件的场合使用C++,在快速开发时候使用 Python。”
可嵌入性:可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。
丰富的库:Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。
规范的代码:Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。Python的作者设计限制性很强的语法,使得不好的编程习惯(例如if语句的下一行不向右缩进)都不能通过编译。其中很重要的一项就是Python的缩进规则。一个和其他大多数语言(如C)的区别就是,一个模块的界限,完全是由每行的首字符在这一行的位置来决定(而C语言是用一对花括号{}来明确的定出模块的边界,与字符的位置毫无关系)。通过强制程序员们缩进(包括if,for和函数定义等所有需要使用模块的地方),Python确实使得程序更加清晰和美观。
高级动态编程:虽然Python可能被粗略地分类为“脚本语言”(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。Python的支持者较喜欢称它为一种高级动态编程语言,原因是“脚本语言”泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。
做科学计算优点多:说起科学计算,首先会被提到的可能是MATLAB。除了MATLAB的一些专业性很强的工具箱还无法被替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相应的扩展库。和MATLAB相比,用Python做科学计算有如下优点:
● 首先,MATLAB是一款商用软件,并且价格不菲。而Python完全免费,众多开源的科学计算库都提供了Python的调用接口。用户可以在任何计算机上免费安装Python及其绝大多数扩展库。
● 其次,与MATLAB相比,Python是一门更易学、更严谨的程序设计语言。它能让用户编写出更易读、易维护的代码。
● 最后,MATLAB主要专注于工程和科学计算。然而即使在计算领域,也经常会遇到文件管理、界面设计、网络通信等各种需求。而Python有着丰富的扩展库,可以轻易完成各种高级任务,开发者可以用Python实现完整应用程序所需的各种功能。
⑵ python的ide有哪些
分享的这几个IDE工具希望会对你的开发有帮助。
1.Pyscripter
Pyscriptor是一个开源的Python集成开发环境,很富有竞争力,同样有诸如代码自动完成、语法检查、视图分割文件编辑等功能。
2. Wing
Wing是一个Python语言的超强IDE,适合做交互式的Python开发.Wing IDE同样支持自动代码完成、代码错误检查、开发技巧提示等,而且Wing IDE也支持多种操作系统,包括Windows、Linux和Mac OS X。
3. Emacs
Emacs是一个可扩展的文本编辑器,同样支持Python开发.Emacs本身以Lisp解释器作为其核心,而且包含了大量的扩展。
4. Pycharm
Pycharm是一个跨平台的Python开发工具,是JetBrains公司的产品.其特征包括:自动代码完成、集成的Python调试器、括号自动匹配、代码折叠.Pycharm支持Windows、MacOS以及Linux等系统,而且可以远程开发、调试、运行程序。
5. Sublime Text
SublimeText也是适合Python开发的IDE工具,SublimeText虽然仅仅是一个编辑器,但是它有丰富的插件,使得对Python开发的支持非常到位。
6. Vim
Vim是一个简洁、高效的工具,也适合做Python开发。
7. Komodo Edit
Komodo Edit是一个免费的、开源的、专业的Python IDE,其特征是非菜单的操作方式,开发高效。
8. Eclipse with PyDev
Eclipse+PyDev插件,很适合开发Python Web应用,其特征包括自动代码完成、语法高亮、代码分析、调试器、以及内置的交互浏览器。
很多时候,一个好的工具能够对于编程的辅助作用是非常大的,无论是在python培训期间还是工作之后,都脱离不了各种IDE工具应用。
⑶ 如何安装python
1、首先,需要到python的官方网站下载python的安装包。
⑷ 盘点Python常用的模块和包
模块
1.定义
计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。
2.优点:
提高代码的可维护性。
提高代码的复用,当模块完成时就可以在其他代码中调用。
引用其他模块,包含python内置模块和其他第三方模块。
避免函数名和变量名等名称冲突。
python内建模块:
1.sys模块
2.random模块
3.os模块:
os.path:讲解
https://www.cnblogs.com/yufeihlf/p/6179547.html
数据可视化
1.matplotlib :
是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。
访问:
https://matplotlib.org/
颜色:
https://www.cnblogs.com/darkknightzh/p/6117528.html
教程:
https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html
2.Seaborn:
它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。
访问:
http://seaborn.pydata.org/index.html
3.ggplot:
gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图
访问:
http://ggplot.yhathq.com/
4.Mayavi:
Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图
访问:http://code.enthought.com/pages/mayavi-project.html
讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8
5.TVTK:
TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。
VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据
讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html
机器学习
1.Scikit-learn
是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。
访问:
讲解:https://blog.csdn.net/finafily0526/article/details/79318401
2.Tensorflow
最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
相关推荐:《Python视频教程》
Web框架
1.Tornado
访问:http://www.tornadoweb.org/en/stable/
2.Flask
访问:http://flask.pocoo.org/
3.Web.py
访问:http://webpy.org/
4.django
https://www.djangoproject.com/
5.cherrypy
http://cherrypy.org/
6.jinjs
http://docs.jinkan.org/docs/jinja2/
GUI 图形界面
1.Tkinter
https://wiki.python.org/moin/TkInter/
2.wxPython
https://www.wxpython.org/
3.PyGTK
http://www.pygtk.org/
4.PyQt
https://sourceforge.net/projects/pyqt/
5.PySide
http://wiki.qt.io/Category:LanguageBindings::PySide
科学计算
教程
https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#
1.numpy
访问
http://www.numpy.org/
讲解
https://blog.csdn.net/lm_is_dc/article/details/81098805
2.sympy
sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题
访问
https://docs.sympy.org/0.7.1/guide.html#guide
讲解
https://www.jianshu.com/p/339c91ae9f41
解方程
https://www.cnblogs.com/zyg123/p/10549354.html
3.SciPy
官网
https://www.scipy.org/
讲解
https://blog.csdn.net/wsp_1138886114/article/details/80444621
4.pandas
官网
http://pandas.pydata.org/
讲解
https://www.cnblogs.com/linux-wangkun/p/5903945.html
5.blaze
官网
http://blaze.readthedocs.io/en/latest/index.html
密码学
1.cryptography
https://pypi.python.org/pypi/cryptography/
2.hashids
http://www.oschina.net/p/hashids
3.Paramiko
http://www.paramiko.org/
4.Passlib
https://pythonhosted.org/passlib/
5.PyCrypto
https://pypi.python.org/pypi/pycrypto
6.PyNacl
http://pynacl.readthedocs.io/en/latest/
爬虫相关
requests
http://www.python-requests.org/
scrapy
https://scrapy.org/
pyspider
https://github.com/binux/pyspider
portia
https://github.com/scrapinghub/portia
html2text
https://github.com/Alir3z4/html2text
BeautifulSoup
https://www.crummy.com/software/BeautifulSoup/
lxml
http://lxml.de/
selenium
http://docs.seleniumhq.org/
mechanize
https://pypi.python.org/pypi/mechanize
PyQuery
https://pypi.python.org/pypi/pyquery/
creepy
https://pypi.python.org/pypi/creepy
gevent
一个高并发的网络性能库
http://www.gevent.org/
图像处理
bigmoyan
http://scikit-image.org/
Python Imaging Library(PIL)
http://www.pythonware.com/procts/pil/
pillow:
http://pillow.readthedocs.io/en/latest/
自然语言处理
1.nltk:
http://www.nltk.org/
教程
https://blog.csdn.net/wizardforcel/article/details/79274443
2.snownlp
https://github.com/isnowfy/snownlp
3.Pattern
https://github.com/clips/pattern
4.TextBlob
http://textblob.readthedocs.io/en/dev/
5.Polyglot
https://pypi.python.org/pypi/polyglot
6.jieba:
https://github.com/fxsjy/jieba
数据库驱动
mysql-python
https://sourceforge.net/projects/mysql-python/
PyMySQL
https://github.com/PyMySQL/PyMySQL
PyMongo
https://docs.mongodb.com/ecosystem/drivers/python/
pymongo
MongoDB库
访问:https://pypi.python.org/pypi/pymongo/
redis
Redis库
访问:https://pypi.python.org/pypi/redis/
cxOracle
Oracle库
访问:https://pypi.python.org/pypi/cx_Oracle
SQLAlchemy
SQL工具包及对象关系映射(ORM)工具
访问:http://www.sqlalchemy.org/
peewee,
SQL工具包及对象关系映射(ORM)工具
访问:https://pypi.python.org/pypi/peewee
torndb
Tornado原装DB
访问:https://github.com/bdarnell/torndb
Web
pycurl
URL处理工具
smtplib模块
发送电子邮件
其他库暂未分类
1.PyInstaller:
是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。
2.Ipython
一种交互式计算和开发环境
讲解
https://www.cnblogs.com/zzhzhao/p/5295476.html
命令
ls、cd 、run、edit、clear、exist
⑸ python常用到哪些库
Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。
下面我们就来看一下python中常用到的库:
数值计算库:
1. NumPy
支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。
2. SciPy
在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。
3. Pandas
基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。
数据可视化库:
4. Matplotlib
第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
5. Seaborn
利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
6. ggplot
基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
7. Bokeh
跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
8. Plotly
可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
9. pygal
与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
10. geoplotlib
用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。
11. missingno
用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。
web开发库:
12. Django
一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。
13. Socket
一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。
14. Flask
一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。
15. Twisted
一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。
数据库管理:
16. MySQL-python
又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2.x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。
17. mysqlclient
完全兼容MySQLdb,同时支持Python 3.x,是Django ORM的依赖工具,可使用原生SQL来操作数据库,安装方式与MySQLdb一致。
18. PyMySQL
纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。
19. SQLAlchemy
一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。
自动化运维:
20. jumpsever跳板机
一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。
21. Mage分布式监控系统
一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。
22. Mage的CMDB
一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。
23. 任务调度系统
一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。
24. Python运维流程系统
一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。
GUI编程:
25. Tkinter
一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 8.0的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。
26. wxPython
一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。
27. PyQt
一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要操作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。
28. PySide
一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。
更多Python知识请关注Python自学网。
⑹ 澶у7涓甯哥敤镄凯yGUI搴
涓冧釜甯哥敤镄凯ythonGUI搴
01.PyQt5
PyQt 5鐢卢iverbank Computing寮鍙戙傚熀
浜嶲t妗嗘灦鏋勫缓锛屾槸涓涓璺ㄥ钩鍙版嗘灦锛屽彲浠ョ粰钖勭
骞冲彴鍒涘缓搴旂敤绋嫔簭锛 鍖呮嫭锛歎nix銆乄indows銆
MacOS銆
PyQt灏哘t鍜孭ython缁揿悎鍦ㄤ竴璧枫傚畠涓嶅彧鏄
涓涓狦UI宸ュ叿鍖呫傝缮鍖呮嫭浜嗙嚎绋嬶纴 Unicode锛 姝
鍒栾〃杈惧纺锛 SQL鏁版嵁搴掳纴 SVG锛 OpenGL锛 XML
鍜屽姛鑳藉畬锽勭殑Web娴忚埚櫒锛 浠ュ强璁稿氢赴瀵岀殑GUI
灏忛儴浠堕泦钖堛
02.Tkinter
Tkinter鏄疨ython涓链鍙楁㈣繋镄凣UI搴扑箣
涓銆傜敱浜庡畠绠鍗曟槗瀛︾殑璇娉曪纴 鎴愪负GUI寮鍙戝埯瀛﹁
镄勯栭変箣涓銆
Tkinter鎻愪緵浜嗗悇绉嶅皬閮ㄤ欢锛 渚嫔傛爣绛撅纴 鎸
阍锛屾枃链瀛楁碉纴澶嶉夋嗗拰婊氩姩鎸夐挳绛夈
鏀鎸丢rid(缃戞牸) 甯冨眬锛 鐢变簬鎴戜滑镄勭▼搴忓ぇ澶
鏁伴兘鏄鐭╁舰鏄剧ず锛岃繖镙峰嵆浣挎槸澶嶆潅镄勮捐★纴寮鍙戣捣
𨱒ヤ篃鍙桦缑绠鍗曚簺銆
浠ヤ笅鏄浣跨敤Tkinter璁捐′竴涓狟MI璁$畻鍣ㄧ晫闱
03.K ivy
K ivy鏄鍙︿竴涓寮婧愮殑Python搴掳纴 链澶х殑浼
镣瑰氨鏄鍙浠ュ揩阃熷湴缂栧啓绉诲姩搴旂敤绋嫔簭(镓嬫満)銆
K ivy鍙浠ュ湪涓嶅悓镄勫钩鍙颁笂杩愯岋纴 鍖呮嫭
Windows銆丮acOS銆丩inux銆丄ndroid銆乮OS
鍜屾爲銮撴淳銆
姝ゅ栦篃鏄鍏嶈垂浣跨敤镄勶纴 銮峰缑浜哅IT璁稿彲銆
璇句欢锛岀玛璁帮纴瑙嗛
鍏ラ棬PDF涔︾睄
04.wxPython
wxPython鏄涓涓璺ㄥ钩鍙癎UI镄凯ython搴掳纴
鍙杞绘涧鍒涘缓锷熻兘寮哄ぇ绋冲畾镄凣UI锛 鏄鐢–++缂栧啓镄
鐩鍓嶏纴 鏀鎸乄indows锛 MacOSx锛
macOS鍜孡inux銆
浣跨敤wxPython鍒涘缓镄勫簲鐢ㄧ▼搴(GUI) 鍦ㄦ墍链
骞冲彴涓婇兘鍏锋湁铡熺敓澶栬伞
涓嬮溃浣跨敤wxPython鍒涘缓涓涓锘烘湰镄凣UI绀轰緥锛
05.Py Simple GUI
Py Simple GUI涔熸槸锘轰簬Python镄凣UI妗
鏋躲傚彲浠ヨ交𨱒惧埗浣滆嚜瀹氢箟镄凣U1銆
閲囩敤浜嗗洓绉嶆渶娴佽岀殑GUI妗嗘灦QT銆
Tkinter銆乄xPython鍜孯emi锛 鑳藉熷疄鐜板ぇ澶氭暟
镙蜂緥浠g爜锛岄檷浣庝简瀛︿範闅惧害銆
Remi灏嗗簲鐢ㄧ▼搴忕殑鐣岄溃杞鎹涓篐TML锛 浠ヤ究
鍦╓eb娴忚埚櫒涓锻堢幇銆
06.Py GUI
Py GUI鏄涓涓浠ョ亩鍗旳PI钥岄椈钖岖殑GUI妗嗘灦锛
鍑忓皯Python搴旂敤涓庡钩鍙板簳灞侴UI涔嬮棿镄勪唬镰侀噺銆
杞婚噺绾х殑API锛 鍙浠ヨ╀綘镄勫簲鐢ㄧ▼搴忚繍琛岃捣𨱒ユ洿娴
鐣咃纴镟村揩阃熴
钖屾椂杩桦紑婧愪唬镰侊纴璺ㄥ钩鍙伴”鐩銆傜洰鍓嶅彲鍦ㄥ熀浜
Unix镄勭郴缁燂纴 Windows鍜孧acOS涓婅繍琛屻
Python 2鍜孭ython 3锛 閮芥槸鍙浠ユ敮鎸佺殑銆
07.Py forms
Py forms鏄鐢ㄤ簬寮鍙慓UI搴旂敤绋嫔簭镄勪竴涓璺
骞冲彴妗嗘灦銆傛槸涓涓狿ython 2.7/3.x璺ㄧ幆澧冨浘褰㈠簲
鐢ㄥ紑鍙戞嗘灦锛屾ā鍧楀寲鍜屼唬镰佸岖敤鍙浠ヨ妭鐪佸ぇ閲忓伐
浣溿
鍏佽稿簲鐢ㄧ▼搴忓湪妗岄溃锛 Web鍜岀粓绔涓婅繍琛岋纴
镞犻渶淇鏀逛唬镰併