当前位置:首页 » 编程语言 » java排序快速排序

java排序快速排序

发布时间: 2024-04-13 14:36:36

‘壹’ 如何用java实现快速排序,简答讲解下原理

快速排序思想:
通过对数据元素集合Rn 进行一趟排序划分出独立的两个部分。其中一个部分的关键字比另一部分的关键字小。然后再分别对两个部分的关键字进行一趟排序,直到独立的元素只有一个,此时整个元素集合有序。
快速排序的过程,对一个元素集合R[ low ... high ] ,首先取一个数(一般是R[low] )做参照 , 以R[low]为基准重新排列所有的元素。
所有比R[low]小的放前面,所有比R[low] 大的放后面,然后以R[low]为分界,对R[low ... high] 划分为两个子集和,再做划分。直到low >= high 。
比如:对R={37, 40, 38, 42, 461, 5, 7, 9, 12}进行一趟快速排序的过程如下(注:下面描述的内容中元素下表从 0 开始):
开始选取基准 base = 37,初始位置下表 low = 0 , high = 8 , 从high=8,开始如果R[8] < base , 将high位置中的内容写入到R[low]中, 将high位置空出来, low = low +1 ;
从low开始探测,由于low=1 , R[low] > base ,所以将R[low]写入到R[high] , high = high -1 ;
检测到low < high ,所以第一趟快速排序仍需继续:
此时low=1,high=7,因为 R[high] < base ,所以将 R[high] 写入到到R[low]中,low = low + 1;
从low开始探测,low = 2 , R[low] >base ,所以讲R[low]写入到R[high],high=high-1;
继续检测到 low 小于high
此时low=2,high=6,同理R[high] < base ,将R[high] 写入到R[low]中,low=low+1;
从low继续探测,low = 3 , high=6 , R[low] > base , 将R[low]写入到R[high]中,high = high-1;
继续探测到low小于high
此时low=3,high=5,同理R[high] < base,将R[high]写入到R[low]中,low = low +1;
从low继续探测,low = 4,high=5,由于R[low] > base , 将R[low]写入到R[high]中,high = high -1 ;
此时探测到low == high == 4 ;该位置即是base所在的位置,将base写入到该位置中.
然后再对子序列Rs1 = {12,9,7,5} 和 Rs2={461,42,38,40}做一趟快速排序,直到Rsi中只有一个元素,或没有元素。
快速排序的Java实现:
private static boolean isEmpty(int[] n) {

return n == null || n.length == 0;
}

// ///////////////////////////////////////////////////
/**
* 快速排序算法思想——挖坑填数方法:
*
* @param n 待排序的数组
*/
public static void quickSort(int[] n) {
if (isEmpty(n))
return;
quickSort(n, 0, n.length - 1);
}

public static void quickSort(int[] n, int l, int h) {
if (isEmpty(n))
return;
if (l < h) {
int pivot = partion(n, l, h);
quickSort(n, l, pivot - 1);
quickSort(n, pivot + 1, h);
}
}

private static int partion(int[] n, int start, int end) {
int tmp = n[start];
while (start < end) {
while (n[end] >= tmp && start < end)
end--;
if (start < end) {
n[start++] = n[end];
}
while (n[start] < tmp && start < end)
start++;
if (start < end) {
n[end--] = n[start];
}
}
n[start] = tmp;
return start;
}
在代码中有这样一个函数:
public static void quickSortSwap(int[] n, int l, int h)
该函数可以实现,元素集合中特定的 l 到 h 位置间的数据元素进行排序。

‘贰’ java实现几种常见排序算法

下面给你介绍四种常用排序算法:

1、冒泡排序

特点:效率低,实现简单

思想(从小到大排):每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。这只是冒泡排序的一种,当然也可以从后往前排。

‘叁’ 数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。

二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次扫描选择最小项
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。

三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low < high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。

七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j<=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;i<G.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。

‘肆’ java快速排序简单代码

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
1. 算法步骤
从数列中挑出一个元素,称为 "基准"(pivot);

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2. 动图演示
代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {
    var len = arr. length ,
        partitionIndex ,
        left = typeof left != 'number' ? 0 : left ,
        right = typeof right != 'number' ? len - 1 : right ;

    if ( left

‘伍’ java编程实现随机数组的快速排序

java编程实现随机数组的快速排序步骤如下:

1、打开Eclipse,新建一个Java工程,在此工程里新建一个Java类;

2、在新建的类中声明一个产生随机数的Random变量,再声明一个10个长度的int型数组;

3、将产生的随机数逐个放入到数组中;

4、利用排序算法对随机数组进行排序。

具体代码如下:

importjava.util.Random;
publicclassDemo{
publicstaticvoidmain(String[]args){
intcount=0;
Randomrandom=newRandom();
inta[]=newint[10];
while(count<10){
a[count]=random.nextInt(1000);//产生0-999的随机数
count++;
}
for(inti=0;i<a.length-1;i++){
intmin=i;
for(intj=i+1;j<a.length;j++){
if(a[j]<a[min]){
min=j;
}
}
if(min!=i){
intb=a[min];
a[min]=a[i];
a[i]=b;
}
}
for(intc=0;c<a.length;c++){
System.out.print(a[c]+"");
}
}
}

‘陆’ java怎么实现排序

Java实现几种常见排序方法

日常操作中常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。
以下常见算法的定义
1. 插入排序:插入排序基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。
2. 选择排序:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。
4. 快速排序:快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5. 归并排序:归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
6. 希尔排序:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
https://www.cnblogs.com/wangmingshun/p/5635292.html

‘柒’ 如何理解java数据结构中的快速排序方法

原理:

快速排序也是分治法思想的一种实现,他的思路是使数组中的每个元素与基准值(Pivot,通常是数组的首个值,A[0])比较,数组中比基准值小的放在基准值的左边,形成左部;大的放在右边,形成右部;接下来将左部和右部分别递归地执行上面的过程:选基准值,小的放在左边,大的放在右边。。。直到排序结束。

步骤:

1.找基准值,设Pivot = a[0]

2.分区(Partition):比基准值小的放左边,大的放右边,基准值(Pivot)放左部与右部的之间。

3.进行左部(a[0] - a[pivot-1])的递归,以及右部(a[pivot+1] - a[n-1])的递归,重复上述步骤。

排序效果:

‘捌’ Java通过几种经典的算法来实现数组排序

JAVA中在运用数组进行排序功能时,一般有四种方法:快速排序法、冒泡法、选择排序法、插入排序法。
快速排序法主要是运用了Arrays中的一个方法Arrays.sort()实现。
冒泡法是运用遍历数组进行比较,通过不断的比较将最小值或者最大值一个一个的遍历出来。
选择排序法是将数组的第一个数据作为最大或者最小的值,然后通过比较循环,输出有序的数组。
插入排序是选择一个数组中的数据,通过不断的插入比较最后进行排序。下面我就将他们的实现方法一一详解供大家参考。
<1>利用Arrays带有的排序方法快速排序

public class Test2{ public static void main(String[] args){ int[] a={5,4,2,4,9,1}; Arrays.sort(a); //进行排序 for(int i: a){ System.out.print(i); } } }

<2>冒泡排序算法

public static int[] bubbleSort(int[] args){//冒泡排序算法 for(int i=0;i<args.length-1;i++){ for(int j=i+1;j<args.length;j++){ if (args[i]>args[j]){ int temp=args[i]; args[i]=args[j]; args[j]=temp; } } } return args; }

<3>选择排序算法

public static int[] selectSort(int[] args){//选择排序算法 for (int i=0;i<args.length-1 ;i++ ){ int min=i; for (int j=i+1;j<args.length ;j++ ){ if (args[min]>args[j]){ min=j; } } if (min!=i){ int temp=args[i]; args[i]=args[min]; args[min]=temp; } } return args; }

<4>插入排序算法

public static int[] insertSort(int[] args){//插入排序算法 for(int i=1;i<args.length;i++){ for(int j=i;j>0;j--){ if (args[j]<args[j-1]){ int temp=args[j-1]; args[j-1]=args[j]; args[j]=temp; }else break; } } return args; }

热点内容
java单例实现 发布:2025-01-20 11:48:40 浏览:333
cad为什么加载不了配置 发布:2025-01-20 11:37:45 浏览:16
服务器记录的手机ip 发布:2025-01-20 11:32:47 浏览:672
sparksql查询 发布:2025-01-20 11:27:51 浏览:204
安卓奥特曼格斗进化1怎么发大招 发布:2025-01-20 11:17:03 浏览:605
试验数据存储 发布:2025-01-20 11:03:38 浏览:305
联想如何将密码退出 发布:2025-01-20 10:51:41 浏览:972
ftp传输文件连接失败 发布:2025-01-20 10:49:39 浏览:723
xp共享访问不了 发布:2025-01-20 10:40:05 浏览:946
基恩士plc编程手册 发布:2025-01-20 10:11:30 浏览:910