pythoncelery
‘壹’ Django配置Celery执行异步和同步任务(tasks))
celery是一个基于python开发的简单、灵活且可靠的分布式任务队列框架,支持使用任务队列的方式在分布式的机器/进程/线程上执行任务调度。采用典型的生产者-消费者模型,主要由三部分组成:
比如系统上线前后台批量导入历史数据,发送短信、发送邮件等耗时的任务
1.安装RabbitMQ,这里我们使用RabbitMQ作为broker,安装完成后默认启动了,也不需要其他任何配置
Ubuntu linux安装
CentOS Linux 安装
苹果mac 安装需要配置
配置环境变量 (苹果用户)
启动rabbitmq-server
2.安装celery
3.celery用在django项目中,django项目目录结构(简化)如下
4.创建 oa/celery.py 主文件
5.在 oa/__init__.py 文件中增加如下内容,确保django启动的时候这个app能够被加载到
6.各应用创建tasks.py文件,这里为 users/tasks.py
7.views.py中引用使用这个tasks异步处理
8.启动celery
9.这样在调用post这个方法时,里边的add就可以异步处理了
定时任务的使用场景就很普遍了,比如我需要定时发送报告给老板~
1. oa/celery.py 文件添加如下配置以支持定时任务crontab
3.启动celery beat,celery启动了一个beat进程一直在不断的判断是否有任务需要执行
‘贰’ python 使用celery为了解决什么业务问题
Celery是一个专注于实时处理和任务调度的分布式任务队列。所谓任务就是消息,消息中的有效载荷中包含要执行任务需要的全部数据。
使用Celery的常见场景如下:
1. Web应用。当用户触发的一个操作需要较长时间才能执行完成时,可以把它作为任务交给Celery去异步执行,执行完再返回给用户。这段时间用户不需要等待,提高了网站的整体吞吐量和响应时间。
2. 定时任务。生产环境经常会跑一些定时任务。假如你有上千台的服务器、上千种任务,定时任务的管理很困难,Celery可以帮助我们快速在不同的机器设定不同种任务。
3. 同步完成的附加工作都可以异步完成。比如发送短信/邮件、推送消息、清理/设置缓存等。
Celery还提供了如下的特性:
1. 方便地查看定时任务的执行情况,比如执行是否成功、当前状态、执行任务花费的时间等。
2. 可以使用功能齐备的管理后台或者命令行添加、更新、删除任务。
3. 方便把任务和配置管理相关联。
4. 可选多进程、Eventlet和Gevent三种模式并发执行。
5. 提供错误处理机制。
- 提供多种任务原语,方便实现任务分组、拆分和调用链。
- 支持多种消息代理和存储后端。
‘叁’ Python 异步任务队列Celery 使用
在 Python 中定义 Celery 的时候,我们要引入 Broker,中文翻译过来就是“中间人”的意思。在工头(生产者)提出任务的时候,把所有的任务放到 Broker 里面,在 Broker 的另外一头,一群码农(消费者)等着取出一个个任务准备着手做。这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的。所以我们要引入 Backend 来保存每次任务的结果。这个 Backend 也是存储任务的信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到 Backend,这样我们取回结果,便可以知道有多少任务执行失败了。
其实现架构如下图所示:
可以看到,Celery 主要包含以下几个模块:
celery可以通过pip自动安装。
broker 可选择使用RabbitMQ/redis,backend可选择使用RabbitMQ/redis/MongoDB。RabbitMQ/redis/mongoDB的安装请参考对应的官方文档。
------------------------------rabbitmq相关----------------------------------------------------------
官网安装方法: http://www.rabbitmq.com/install-windows.html
启动管理插件:sbin/rabbitmq-plugins enable rabbitmq_management 启动rabbitmq:sbin/rabbitmq-server -detached
rabbitmq已经启动,可以打开页面来看看 地址: http://localhost:15672/#/
用户名密码都是guest 。进入可以看到具体页面。 关于rabbitmq的配置,网上很多 自己去搜以下就ok了。
------------------------------rabbitmq相关--------------------------------------------------------
项目结构如下:
使用前,需要三个方面:celery配置,celery实例,需执行的任务函数,如下:
Celery 的配置比较多,可以在 官方配置文档: http://docs.celeryproject.org/en/latest/userguide/configuration.html 查询每个配置项的含义。
当然,要保证上述异步任务and下述定时任务都能正常执行,就需要先启动celery worker,启动命令行如下:
需 启动beat ,执行定时任务时, Celery会通过celery beat进程来完成。Celery beat会保持运行, 一旦到了某一定时任务需要执行时, Celery beat便将其加入到queue中. 不像worker进程, Celery beat只需要一个即可。而且为了避免有重复的任务被发送出去,所以Celery beat仅能有一个。
命令行启动:
如果你想将celery worker/beat要放到后台运行,推荐可以扔给supervisor。
supervisor.conf如下:
‘肆’ 简单强大的Python库!Schele—实用的周期任务调度工具
如果你想在Linux服务器上周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:
1.不方便执行 秒级的任务 。
2.当需要执行的定时任务有上百个的时候,Crontab的 管理就会特别不方便 。
另外一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。
在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schele 模块是你的不二之选。
使用它来调度任务可能只需要几行代码,感受一下:
上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schele 模块,通过调用 scele.every(时间数).时间类型.do(job) 发布周期任务。
发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。
下面具体讲讲Schele模块的安装和初级、进阶使用方法。
1.准备
请选择以下任一种方式输入命令安装依赖 :
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.
2.基本使用
最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:
可以看到,从月到秒的配置,上面的例子都覆盖到了。不过 如果你想只运行一次任务 的话,可以这么配:
参数传递
如果你有参数需要传递给作业去执行,你只需要这么做:
获取目前所有的作业
如果你想获取目前所有的作业:
取消所有作业
如果某些机制触发了,你需要立即清除当前程序的所有作业:
标签功能
在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。
设定作业截止时间
如果你需要让某个作业到某个时间截止,你可以通过这个方法:
截止日期之后,该作业将无法运行。
立即运行所有作业,而不管其安排如何
如果某个机制触发了,你需要立即运行所有作业,可以调用 schele.run_all :
3.高级使用
装饰器安排作业
如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:
并行执行
默认情况下,Schele 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。
不过你可以通过多线程的形式来运行每个作业以解决此限制:
日志记录
Schele 模块同时也支持 logging 日志记录,这么使用:
效果如下:
异常处理
Schele 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题: 后续所有的作业都会被中断执行 ,因此我们需要捕捉到这些异常。
你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:
这样, bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。