当前位置:首页 » 编程语言 » despython

despython

发布时间: 2023-12-22 07:52:28

㈠ 求一个DES 算法 PHP python 通用 PHP进行加密 python解密

用hash呗。
import hashlib

a = "a test string"
print hashlib.md5(a).hexdigest()
print hashlib.sha1(a).hexdigest()
print hashlib.sha224(a).hexdigest()
print hashlib.sha256(a).hexdigest()
print hashlib.sha384(a).hexdigest()
print hashlib.sha512(a).hexdigest()

针对str类型的。
加密的话,可以对最后得出的hash值再处理即可。比如左移,右移,某2位替换,某位加几等等即可。
解密直接用逆序就可以了。

㈡ Python有什么模块来加密

对Python加密时可能会有两种形式,一种是对Python转成的exe进行保护,另一种是直接对.py或者.pyc文件进行保护,下面将列举两种形式的保护流程。

1、对python转exe加壳

下载最新版VirboxProtector加壳工具,使用加壳工具直接对demo.exe进行加壳操作

2、对.py/.pyc加密

第一步,使用加壳工具对python安装目录下的python.exe进行加壳,将python.exe拖入到加壳工具VirboxProtector中,配置后直接点击加壳。

第二步,对.py/.pyc进行加密,使用DSProtector对.py/.pyc进行保护。

安全技术:

l虚拟机外壳:精锐5的外壳保护工具,创新性的引入了预分析和自动优化引擎,有效的解决了虚拟化保护代码时的安全性和性能平衡问题。

l碎片代码执行:利用自身成熟的外壳中的代码提取技术,抽取大量、大段代码,加密混淆后在安全环境中执行,最大程度上减少加密锁底层技术和功能的依赖,同时大量大段地移植又保证了更高的安全性。

lVirbox加密编译引擎:集编译、混淆等安全功能于一身,由于在编译阶段介入,可优化空间是普遍虚拟化技术无法比拟的,对代码、变量的混淆程度也有了根本的提升。

l反黑引擎:内置R0级核心态反黑引擎,基于黑客行为特征 的(反黑数据库)反制手段。精准打击调试、注入、内存修改等黑客行为,由被动挨打到主动防护。

加密效果:

加密之前

以pyinstall 的打包方式为例,使用pyinstxtractor.py文件对log_322.exe进行反编译,执行后会生成log_322.exe_extracted文件夹,文件夹内会生成pyc文件。

成功之后会在同目录下生成一个文件夹

㈢ C#(加密)Des很容易被破解吗

加密算法跟 C#、或者说跟语言无关。

DES 是通过16轮迭代函数,使得原文混淆+扩散;而 AES 是通过线性混合层(行移位SR以及列混合MC)使得原文扩散,字节代替变换使得原文混淆。

说 DES 不如 AES 原因有几点:1、DES 密钥长度短,只有 56bit,而 AES 密钥长度可以达到 256bit;2、DES 不能对抗差分和线性密码分析;3、DES 支持可变分组长度。

综上三点,导致破解 AES 的难度几何倍数增加(其实光第一条就已经秒杀 DES 了)。但要注意的是,DES 的容易破解是相对的,用穷举法来破解(不考虑彩虹表),就凭你家用机的速度,马力全开的得算个几年的。当然了,计算机也在不断发展,未来要是能出现个1微秒能穷举几万个密钥的芯片了,那 AES 也会被迅速淘汰掉。

㈣ python 实现一级目录下的所有文件与文件夹到指定目录

'''
python3 实现
将a目录下所有文件和文件夹到b目录
'''
import os, shutil

#src 原始目录, des 目标目录
def sourcecpy(src, des):
src = os.path.normpath(src)
des = os.path.normpath(des)
if not os.path.exists(src) or not os.path.exists(src):
print("文件路径不存在")
sys.exit(1)
#获得原始目录中所有的文件,并拼接每个文件的绝对路径
os.chdir(src)
src_file = [os.path.join(src, file) for file in os.listdir()]
for source in src_file:
#若是文件
if os.path.isfile(source):
shutil.(source, des) #第一个参数是文件,第二个参数目录
#若是目录
if os.path.isdir(source):
p, src_name = os.path.split(source)
des = os.path.join(des, src_name)
shutil.tree(source, des) #第一个参数是目录,第二个参数也是目录

㈤ python如何float保留2位小数

具体如下。
des=6.012。des=round(des,2)#保留两位小数,6.01。
Python由荷兰数学和计算机科学研究学会的GuidovanRossum于1990年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型埋喊语言的本质,使它成为多数平台上写脚本茄樱和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
Python解释器易于扩展,可弯纳野以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。

㈥ OpenCV-Python之——图像SIFT特征提取

在一定的范围内,无论物体是大还是小,人眼都可以分辨出来。然而计算机要有相同的能力却不是那么的容易,在未知的场景中,计算机视觉并不能提供物体的尺度大小,其中的一种方法是把物体不同尺度下的图像都提供给机器,让机器能够对物体在不同的尺度下有一个统一的认知。在建立统一认知的过程中,要考虑的就是在图像在不同的尺度下都存在的特征点。

在早期图像的多尺度通常使用图像金字塔表示形式。图像金字塔是同一图像在不同的分辨率下得到的一组结果其生成过程一般包括两个步骤:

多分辨率的图像金字塔虽然生成简单,但其本质是降采样,图像的局部特征则难以保持,也就是无法保持特征的尺度不变性。

我们还可以通过图像的模糊程度来模拟人在距离物体由远到近时物体在视网膜上成像过程,距离物体越近其尺寸越大图像也越模糊,这就是高斯尺度空间,使用不同的参数模糊图像(分辨率不变),是尺度空间的另一种表现形式。

构建尺度空间的目的是为了检测出在不同的尺度下都存在的特征点,而检测特征点较好的算子是Δ^2G(高斯拉普拉斯,LoG)
使用LoG虽然能较好的检测到图像中的特征点,但是其运算量过大,通常可使用DoG(差分高斯,Difference of Gaussina)来近似计算LoG。

从上式可以知道,将相邻的两个高斯空间的图像相减就得到了DoG的响应图像。为了得到DoG图像,先要构建高斯尺度空间,而高斯的尺度空间可以在图像金字塔降采样的基础上加上高斯滤波得到,也就是对图像金字塔的每层图像使用不同的参数σ进行高斯模糊,使每层金字塔有多张高斯模糊过的图像。
如下图,octave间是降采样关系,且octave(i+1)的第一张(从下往上数)图像是由octave(i)中德倒数第三张图像降采样得到。octave内的图像大小一样,只是高斯模糊使用的尺度参数不同。

对于一幅图像,建立其在不同尺度scale下的图像,也称为octave,这是为了scale-invariant,也就是在任何尺度都能有对应的特征点。下图中右侧的DoG就是我们构建的尺度空间。

为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点。下图中将叉号点要比较的26个点都标为了绿色。

找到所有特征点后, 要去除低对比度和不稳定的边缘效应的点 ,留下具有代表性的关键点(比如,正方形旋转后变为菱形,如果用边缘做识别,4条边就完全不一样,就会错误;如果用角点识别,则稳定一些)。去除这些点的好处是增强匹配的抗噪能力和稳定性。最后,对离散的点做曲线拟合,得到精确的关键点的位置和尺度信息。

近来不断有人改进,其中最着名的有 SURF(计算量小,运算速度快,提取的特征点几乎与SIFT相同)和 CSIFT(彩色尺度特征不变变换,顾名思义,可以解决基于彩色图像的SIFT问题)。

其中sift.detectAndCompute()函数返回kp,des。

上图dog的shape为(481, 500, 3),提取的特征向量des的shape为(501, 128),501个128维的特征点。

该方法可以在特征点处绘制一个小圆圈。

https://blog.csdn.net/happyer88/article/details/45817305
https://www.jianshu.com/p/d94e558ebe26
https://www.cnblogs.com/wangguchangqing/p/4853263.html

㈦ python 中如何实现对文件的复制、粘贴

file类中没有提供专门的文件复制函数,因此只能通过使用文件的读写函数来实现文件的复制。这里仅仅给出范例:
src = file("myfile.txt", "w+")
temp = ["hello world! \n"]
src.writelines(temp)
src.close()

src = file("myfile.txt", "r+")
des = file("myfile2.txt", "w+")
des.writelines(src.read())
src.close()
des.close()

shutil模块是另一个文件,目录的管理接口,提供了一些用于复制文件,目录的函数。file()函数可以实现文件的拷贝,声明如下:
file(src, des)
文件的剪切可以使用move()函数模拟,声明如下:
move(src,des)
功能:移动一个文件或者目录到指定的位置,并且可以根据参数des重命名移动后的文件。

㈧ 使用OpenCV和Python进行图像拼接

么是图像拼接呢?简单来说,对于输入应该有一组图像,输出是合成图像。同时,必须保留图像之间的逻辑流。

首先让我们了解图像拼接的概念。基本上,如果你想捕捉一个大的场景,你的相机只能提供一个特定分辨率的图像(如:640×480),这当然不足以捕捉大的全景。所以,我们可以做的是捕捉整个场景的多个图像,然后把所有的碎片放在一起,形成一个大的图像。这些有序的照片被称为全景。获取多幅图像并将其转换成全景图的整个过程称为图像拼接。

首先,需要安装opencv 3.4.2.16。

接下来我们将导入我们将在Python代码中使用的库:

在我们的教程中,我们将拍摄这张精美的照片,我们会将其分成两张左右两张照片,然后我们会尝试拍摄相同或非常相似的照片。

因此,我将此图像切成两个图像,它们会有某种重叠区域:

在此,我们将列出我们应采取的步骤,以取得最终的结果:

因此,从第一步开始,我们将导入这两个图像并将它们转换为灰度,如果您使用的是大图像,我建议您使用cv2.resize,因为如果您使用较旧的计算机,它可能会非常慢并且需要很长时间。如果要调整图像大小,即调整50%,只需将fx = 1更改为fx = 0.5即可。

我们还需要找出两幅图像中匹配的特征。我们将使用opencv_contrib的SIFT描述符。SIFT (Scale constant Feature Transform)是一种非常强大的OpenCV算法。这些最匹配的特征作为拼接的基础。我们提取两幅图像的关键点和sift描述符如下:

kp1和kp2是关键点,des1和des2是图像的描述符。如果我们用特征来画这幅图,它会是这样的:

左边的图像显示实际图像。右侧的图像使用SIFT检测到的特征进行注释:

一旦你有了两个图像的描述符和关键点,我们就会发现它们之间的对应关系。我们为什么要这么做?为了将任意两个图像连接成一个更大的图像,我们必须找到重叠的点。这些重叠的点会让我们根据第一幅图像了解第二幅图像的方向。根据这些公共点,我们就能知道第二幅图像是大是小还是旋转后重叠,或者缩小/放大后再fitted。所有此类信息的产生是通过建立对应关系来实现的。这个过程称为registration。

对于匹配图像,可以使用opencv提供的FLANN或BFMatcher方法。我会写两个例子证明我们会得到相同的结果。两个示例都匹配两张照片中更相似的特征。当我们设置参数k = 2时,这样我们就要求knnMatcher为每个描述符给出2个最佳匹配。“matches”是列表的列表,其中每个子列表由“k”个对象组成。以下是Python代码:

FLANN匹配代码:

BFMatcher匹配代码:

通常在图像中,图像的许多地方可能存在许多特征。所以我们过滤掉所有的匹配来得到最好的。因此我们使用上面得到的前2个匹配项进行比值检验。如果下面定义的比值大于指定的比值,则考虑匹配。

现在我们定义在图像上绘制线条的参数,并给出输出以查看当我们在图像上找到所有匹配时的样子:

这是输出的匹配图像:

这部分完整Python代码:

因此,一旦我们获得了图像之间的最佳匹配,我们的下一步就是计算单应矩阵。如前所述,单应矩阵将与最佳匹配点一起使用,以估计两个图像内的相对方向变换。

在OpenCV中估计单应性是一项简单的任务,只需一行代码:

在开始编码拼接算法之前,我们需要交换图像输入。所以img_现在会取右图像img会取左图像。

那么让我们进入拼接编码:

因此,首先,我们将最小匹配条件count设置为10(由MIN_MATCH_COUNT定义),并且只有在匹配良好的匹配超出所需匹配时才进行拼接。否则,只需显示一条消息,说明匹配不够。

因此,在if语句中,我们将关键点(从匹配列表)转换为findHomography()函数的参数。

只需在这段代码中讨论cv2.imshow(“original_image_overlapping.jpg”,img2),我们就会显示我们收到的图像重叠区域:

因此,一旦我们建立了单应性,我们需要扭曲视角,我们将以下单应矩阵应用于图像:

所以我们使用如下:

在上面两行Python代码中,我们从两个给定的图像中获取重叠区域。然后在“dst”中我们只接收到没有重叠的图像的右侧,因此在第二行代码中我们将左侧图像放置到最终图像。所以在这一点上我们完全拼接了图像:

剩下的就是去除图像的黑色,所以我们将编写以下代码来从所有图像边框中删除黑边:

这是我们调用修剪边界的最终定义函数,同时我们在屏幕上显示该图像。如果您愿意,也可以将其写入磁盘:

使用上面的Python代码,我们将首先收到原始图片:

这是完整的最终代码:

在本教程中,我们学习了如何使用OpenCV执行图像拼接和全景构造,并编写了最终的图像拼接代码。

我们的图像拼接算法需要四个主要步骤:检测关键点和提取局部不变描述符; 获得图像之间的匹配描述符; 应用RANSAC估计单应矩阵; 使用单应矩阵应用warping transformation。

当仅为两个图像构建全景图时,该算法在实践中工作良好。

热点内容
ftp服务器输入密码 发布:2025-01-24 05:27:41 浏览:209
电信帐号怎么改密码 发布:2025-01-24 05:11:22 浏览:846
笔记本x17配置怎么选 发布:2025-01-24 05:05:53 浏览:7
python如何封装 发布:2025-01-24 05:05:46 浏览:843
csgo怎么连接服务器 发布:2025-01-24 05:05:45 浏览:322
408哪个配置合适 发布:2025-01-24 05:01:54 浏览:882
oraclesql删除重复 发布:2025-01-24 05:01:12 浏览:408
少儿编程排行 发布:2025-01-24 04:40:46 浏览:698
搭建服务器怎么使用 发布:2025-01-24 04:19:34 浏览:444
平行进口霸道哪些配置有用 发布:2025-01-24 04:19:32 浏览:874