pythonmain参数
‘壹’ python 多重继承,继承的几个父类都需要传递参数,怎么在子类计算出父类传递的参数总和呢
运行你的代码:出错位置: c = C()
出错结果:TypeError: __init__() missing 1 required positional argument: ' num1 '
先来看你的程序__main()__部分:a = A(2) 和 b = B(5) 这是类A和类B的一个实例。在python中实例变量是用于每个实例的唯一数据,这就说明你这里的传递参数2或者是5只能用在实例化的 a 或者是 b 下才有作用。 那么重点看c = C( ) ,c是类对象C的实例化,c 只能用自身实例变量才有用,因此前面的实例 a 下的变量 num1=2 和 实例 b 下的变量 num1=5对实例c是无用的。所以,出错结果很明显了缺少传递的位置参数了。这为什么提示缺少1个位置参数呢?下面为你简单讲解一下吧。你也可以用内置方法__mro__() :查看方法或者属性的调用路径——print(类名.__mro__)
类C是多继承类A和类B的,多继承(不存在super()重写方法下),类C的实例化c是怎么工作的——对于实例c调用方法或属性过程是这样的:查找当前类C中是否存在,然后在多个父类中按照从左往右顺序查找(类A中先查找,类B中后查找),只要在这个过程中找到就退出了,后面的就不再查找了。
好吧,给你分析一下你程序的过程:类A和类B中都有__init__()同一个方法,方法相同那首先就查找呗——先查找类C(没有对__init__()进行修改,那就是跳过了),然后再去类A查找,好嘛这就找到了__init__(self, num1),找到了就退出了。所以这样一看对类C进行实例化就需要传递一个参数给num1就够了。你也可以交换继承位置class C(B, A),这样就是类C实例化需要传递一个参数给num2就够了。这样过程就清晰了。
好第三个问题来了:你类C中有两个参数呀num1和num2,而实例化又仅需要一个参数就够了,这样就肯定会产生问题了。
不信你试试给c = C(2)产生错误:AttributeError: 'C' object has no attribute 'num2'
解决方法1:既然没有属性num2就在类C中删掉就是了,然后c = C(2)就可以运行成功了。
解决方案2:类变量用于类的所有实例共享的属性和方法。因此,要想共用这两个变量num1和num2,就得让搜索的时候不要进到类A和类B中前提下,将它们变成对应的类变量就可以了。第一个前提很好实现:在类C下 定义:def __init__(self) : pass 第二个条件也比较好实现:将类A或类B的 __init__(self, num) : X.num = num X为对应的类名。(说明:self表示类实例化对象,即self.num 表示实例变量;X表示类对象,则X.num表示类变量),这样就可以共享类A和类B的变量了。
classA:
def__init__(self,num1):
A.num1=num1
classB:
def__init__(self,num2):
B.num2=num2
classC(A,B):
def__init__(self):
pass
defnum_sum(self):
returnself.num2+self.num1
if__name__=='__main__':
a=A(2)
b=B(5)
c=C()
print(c.num_sum())
‘贰’ python如何运行程序并向程序传入参数
参数个数使用len()函数来获取import sys print sys.argv if __name__=='__main__': print "Program name", sys.argv[0] for i in range(1, len(sys.argv)): print "arg%d"%i,sys.argv[i]
注意调用的时候百必须使用
python 脚本名.py arg1 arg2
因为度win下面的命令解释器认为.py不是可执行文件,直接调用文件的内时候,不会传入参数,容如下面的代码则不会传入参数:
脚本名.py arg1 arg2
‘叁’ python的参数如果是以字符串的形式组成,该怎么处理变量的值
代码如下:
def main(param):
param=param.replace(',',';')
exec(param)
print a
print b
print c
param = "a=1,b=2,c=3"
main(param)
==============================
exec()函数可以将字符串转换为代码来执行,但是python中,两句语句间要用‘;’来隔开而不是‘,’。
所以叫加上一句 param=param.replace(',',';'),将逗号都替换为分号。
希望对你有所帮助!
‘肆’ Python 函数中,参数是传值,还是传引用
首先还是应该科普下函数参数传递机制,传值和传引用是什么意思?
函数参数传递机制问题在本质上是调用函数(过程)和被调用函数(过程)在调用发生时进行通信的方法问题。基本的参数传递机制有两种:值传递和引用传递。
值传递(passl-by-value)过程中,被调函数的形式参数作为被调函数的局部变量处理,即在堆栈数森中开辟了内存空间以存放由主调函数放进来的实参的值,从而成为了实参的一个副本。值传递的特点是被调函数对形式参数的任何操作都是作为局部变量进行,不会影响主调函数的实参变量的值。
引用传递(pass-by-reference)过程中,被调函数的形式参数虽然也作为局部变量在堆栈中开辟了内存空间,但是这时存放的是由主调函数放进来的实参变量的地址。被调函数对形参的任何操作都被处理成间接寻址,即通过堆栈中存放的地址访问主调函数中的实参变量。正因为如此,被调函数对形参做的任何操作都影响了主调函数中的实参掘掘变量。
在python中实际又是怎么样的呢?
先看一个简单的例子:
from ctypes import *
import os.path
import sys
def test(c):
print "test before "
print id(c)
c+=2
print "test after +"
print id(c)
return c
def printIt(t):
for i in range(len(t)):
print t[i]
if __name__=="__main__":
a=2
print "main before invoke test"
print id(a)
n=test(a)
print "main afterf invoke test"
print a
print id(a)
运行后结果如下:
>>>
main before invoke test
39601564
test before
39601564
test after +
39601540
main afterf invoke test
2
39601564
id函数可以获得对象的内存地址.很明显从上面例子可以看出,将a变量作为参数传递给了test函数,传递了a的一个引用,把a的地址传递过去了,所以在函数内获取的变量C的地址跟变量a的地址是一样的,但是在函数内,对C进行赋值运算,C的值从2变成了4,实际上2和4所占的内存空间都还是存判毕核在的,赋值运算后,C指向4所在的内存。而a仍然指向2所在的内存,所以后面打印a,其值还是2.
如果还不能理解,先看下面例子
>>> a=1
>>> b=1
>>> id(a)
40650152
>>> id(b)
40650152
>>> a=2
>>> id(a)
40650140
a和b都是int类型的值,值都是1,而且内存地址都是一样的,这已经表明了在python中,可以有多个引用指向同一个内存(画了一个很挫的图,见谅),在给a赋值为2后,再次查看a的内存地址,都已经变化了
而基于最前面的例子,大概可以这样描述:
那python函数传参就是传引用?然后传参的值在被调函数内被修改也不影响主调函数的实参变量的值?再来看个例子。
from ctypes import *
import os.path
import sys
def test(list2):
print "test before "
print id(list2)
list2[1]=30
print "test after +"
print id(list2)
return list2
def printIt(t):
for i in range(len(t)):
print t[i]
if __name__=="__main__":
list1=["loleina",25,'female']
print "main before invoke test"
print id(list1)
list3=test(list1)
print "main afterf invoke test"
print list1
print id(list1)
实际值为:
>>>
main before invoke test
64129944
test before
64129944
test after +
64129944
main afterf invoke test
['loleina', 30, 'female']
64129944
发现一样的传值,而第二个变量居然变化,为啥呢?
实际上是因为python中的序列:列表是一个可变的对象,就基于list1=[1,2] list1[0]=[0]这样前后的查看list1的内存地址,是一样的。
>>> list1=[1,2]
>>> id(list1)
64185208
>>> list1[0]=[0]
>>> list1
[[0], 2]
>>> id(list1)
64185208
结论:python不允许程序员选择采用传值还是传引用。Python参数传递采用的肯定是“传对象引用”的方式。这种方式相当于传值和传引用的一种综合。如果函数收到的是一个可变对象(比如字典或者列表)的引用,就能修改对象的原始值--相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能直接修改原始对象--相当于通过“传值'来传递对象。
分类: python 基础语法
‘伍’ 为什么电脑上的PYTHON运行main指令会报错
if name == '__main__': 相当于一个新的函数,在这个函数里,你调用了main()函数,并传入了args参数,但是在if name == '__main__': 这个函数域内,你并没有定义args,所以报错
‘陆’ 在Python中定义Main函数
目录
许多编程语言都有一个特殊的函数,当操作系统开始运行程序时会自动执行该函数。这个函数通常被命名为main(),并且依据语言标准具有特定的返回类型和参数。另一方面,Python解释器从文件顶部开始执行脚本,并且没有自动执行的特殊函数。
尽管如此,为程序的执行定义一个起始点有助于理解程序是如何运行的。Python程序员提出了几种方式对此进行实现。
本文结束时,您将了解以下内容:
Python中的基本main()函数
一些Python脚本中,包含一个函数定义和一个条件语句,如下所示:
此代码中,包含一个main()函数,在程序执行时打印Hello World!。此外,还包含一个条件(或if)语句,用于检查__name__的值并将其与字符串"__main__"进行比较。当if语句为True时,Python解释器将执行main()函数。更多关于Python条件语句的信息可以由此获得。
这种代码模式在Python文件中非常常见,它将作为脚本执行并导入另一个模块。为了帮助理解这段代码的执行方式,首先需要了解Python解释器如何根据代码的执行方式设置__name__。
Python中的执行模式
Python解释器执行代码有两种方式:
更多内容可参考如何运行Python脚本。无论采用哪种方式,Python都会定义一个名为__name__的特殊变量,该变量包含一个字符串,其值取决于代码的使用方式。
本文将如下示例文件保存为execution_methods.py,以 探索 代码如何根据上下文改变行为:
在此文件中,定义了三个对print()函数的调用。前两个打印一些介绍性短语。第三个print()会先打印短语The value __name__ is,之后将使用Python内置的repr()函数打印出__name__变量。
在Python中,repr()函数将对象转化为供解释器读取的形式。上述示例通过使用repr()函数来强调__name__的值为字符串。更多关于repr()的内容可参考Python文档。
在本文中,您将随处可见文件(file),模块(mole)和脚本(script)这三个字眼。实际上,三者之间并无太大的差别。不过,在强调代码目的时,还是存在细微的差异:
“如何运行Python脚本”一文也讨论了三者的差别。
基于命令行执行
在这类方法中,Python脚本将通过命令行来执行。
执行脚本时,无法与Python解释器正在执行的代码交互。关于如何通过命令行执行代码的详细信息对本文而言并不重要,但您可以通过展开下框阅读更多有关Windows,Linux和macOS之间命令行差异的内容。
命令行环境
不同的操作系统在使用命令行执行代码时存在细微的差异。
在Linux和macOS中,通常使用如下命令:
美元符号($)之前的内容可能有所不同,具体取决于您的用户名和计算机名称。您键入的命令位于$之后。在Linux或macOS上,Python3的可执行文件名为python3,因此可以通过输入python3 script_name.py来运行python脚本。
在Windows上,命令提示符通常如下所示:
根据您的用户名,>之前的内容可能会有所不同,您输入的命令位于>之后。在Windows上,Python3的可执行文件通常为python。因此可以通过输入python script_name.py来运行python脚本。
无论哪种操作系统,本文的Python脚本的输出结果都是相同的。因此本文以Linux和macOS为例。
使用命令行执行execution_methods.py,如下所示:
在这个示例中,__name__具有值'__main__',其中引号(')表明该值为字符串类型。
请记住,在Python中,使用单引号(')和双引号(")定义的字符串没有区别。更多关于字符串的内容请参考Python的基本数据类型。
如果在脚本中包含"shebang行"并直接执行它(./execution_methods.py),或者使用IPython或Jupyter Notebook的%run,将会获取相同的结果。
您还可以通过向命令行添加-m参数的方法实现以模块的方式执行。通常情况下,推荐如下方式pip: python3 -m pip install package_name。
添加-m参数将会运行包中__main__.py的代码。更多关于__main__.py文件的内容可参考如何将开源Python包发布到PyPI中。
在三种情况中,__name__都具有相同的值:字符串'__main__'。
技术细节:Python文档中具体定义了__name__何时取值为'__main__'。
当通过标准输入,脚本或者交互提示中读取数据时,模块的__name__将取值为'__main__'。(来源)
__name__与__doc__,__package__和其他属性一起存储在模块的全局命名空间。更多关于属性的信息可参考Python数据模型文档,特别是关于模块和包的信息,请参阅Python Import文档。
导入模块或解释器
接下来是Python解释器执行代码的第二种方式:导入。在开发模块或脚本时,可以使用import关键字导入他人已经构建的模块。
在导入过程中,Python执行指定模块中定义的语句(但仅在第一次导入模块时)。要演示导入execution_methods.py文件的结果,需要启动Python解释器,然后导入execution_methods.py文件:
在此代码输出中,Python解释器执行了三次print()函数调用。前两行由于没有变量,在输出方面与在命令行上作为脚本执行时完全相同。但是第三个输出存在差异。
当Python解释器导入代码时,__name__的值与要导入的模块的名称相同。您可以通过第三行的输出了解这一点。__name__的值为'execution_methods',是Python导入的.py文件。
注意如果您在没有退出Python时再次导入模块,将不会有输出。
注意:更多关于导入在Python中如何工作的内容请参考官方文档和Python中的绝对和相对导入。
Main函数的最佳实践
既然您已经了解两种执行方式上的差异,那么掌握一些最佳实践方案还是很有用的。它们将适用于编写作为脚本运行的代码或者在另一个模块导入的代码。
如下是四种实践方式:
将大部分代码放入函数或类中
请记住,Python解释器在导入模块时会执行模块中的所有代码。有时如果想要实现用户可控的代码,会导致一些副作用,例如:
在这种情况下,想要实现用户控制触发此代码的执行,而不是让Python解释器在导入模块时执行代码。
因此,最佳方法是将大部分代码包含在函数或类中。这是因为当Python解释器遇到def或class关键字时,它只存储这些定义供以后使用,并且在用户通知之前不会实际执行。
将如下代码保存在best_practices.py以证明这个想法:
在此代码中,首先从time模块中导入sleep()。
在这个示例中,参数以秒的形式传入sleep()函数中,解释器将暂停一段时间再运行。随后,使用print()函数打印关于代码描述的语句。
之后,定义一个process_data()函数,执行如下五项操作:
在命令行中执行
当你将此文件作为脚本用命令行执行时会发生什么呢?
Python解释器将执行函数定义之外的from time import sleep和print(),之后将创建函数process_data()。然后,脚本将退出而不做任何进一步的操作,因为脚本没有任何执行process_data()的代码。
如下是这段脚本的执行结果:
我们在这里看到的输出是第一个print()的结果。注意,从time导入和定义process_data()函数不产生结果。具体来说,调用定义在process_data()内部的print()不会打印结果。
导入模块或解释器执行
在会话(或其他模块)中导入此文件时,Python解释器将执行相同的步骤。
Python解释器导入文件后,您可以使用已导入模块中定义的任何变量,类或函数。为了证明这一点,我们将使用可交互的Python解释器。启动解释器,然后键入import best_practices:
导入best_practices.py后唯一的输出来自process_data()函数外定义的print()。导入模块或解释器执行与基于命令行执行类似。
使用__name__控制代码的执行
如何实现基于命令行而不使用Python解释器导入文件来执行呢?
您可以使用__name__来决定执行上下文,并且当__name__等于"__main__"时才执行process_data()。在best_practices.py文件中添加如下代码:
这段代码添加了一个条件语句来检验__name__的值。当值为"__main__"时,条件为True。记住当__name__变量的特殊值为"__main__"时意味着Python解释器会执行脚本而不是将其导入。
条件语块内添加了四行代码(第12,13,14和15行):
现在,在命令行中运行best_practices.py,并观察输出的变化:
首先,输出显示了process_data()函数外的print()的调用结果。
之后,data的值被打印。因为当Python解释器将文件作为脚本执行时,变量__name__具有值"__main__",因此条件语句被计算为True。
接下来,脚本将调用process_data()并传入data进行修改。当process_data执行时,将输出一些状态信息。最终,将输出modified_data的值。
现在您可以验证从解释器(或其他模块)导入best_practices.py后发生的事情了。如下示例演示了这种情况:
注意,当前结果与将条件语句添加到文件末尾之前相同。因为此时__name__变量的值为"best_practices",因此条件语句结果为False,Python将不执行process_data()。
创建名为main()的函数来包含要运行的代码
现在,您可以编写作为脚本由从命令行执行并导入且没有副作用的Python代码。接下来,您将学习如何编写代码并使其他程序员能轻松地理解其含义。
许多语言,如C,C++,Java以及其他的一些语言,都会定义一个叫做main()的函数,当编译程序时,操作系统会自动调用该函数。此函数通常被称为入口点(entry point),因为它是程序进入执行的起始位置。
相比之下,Python没有一个特殊的函数作为脚本的入口点。实际上在Python中可以将入口点定义成任何名称。
尽管Python不要求将函数命名为main(),但是最佳的做法是将入口点函数命名为main()。这样方便其他程序员定位程序的起点。
此外,main()函数应该包含Python解释器执行文件时要运行的任何代码。这比将代码放入条件语块中更好,因为用户可以在导入模块时重复使用main()函数。
修改best_practices.py文件如下所示:
在这个示例中,定义了一个main()函数,它包含了上面的条件语句块。之后修改条件语块执行main()。如果您将此代码作为脚本运行或导入,将获得与上一节相同的输出。
在main()中调用其他函数
另一种常见的实现方式是在main()中调用其他函数,而不是直接将代码写入main()。这样做的好处在于可以实现将几个独立运行的子任务整合。
例如,某个脚本有如下功能:
如果在单独的函数中各自实现这些子任务,您(或其他用户)可以很容易地实现代码重用。之后您可以在main()函数中创建默认的工作流。
您可以根据自己的情况选择是否使用此方案。将任务拆分为多个函数会使重用更容易,但会增加他人理解代码的难度。
修改best_practices.py文件如下所示:
在此示例代码中,文件的前10行具有与之前相同的内容。第12行的第二个函数创建并返回一些示例数据,第17行的第三个函数模拟将修改后的数据写入数据库。
第21行定义了main()函数。在此示例中,对main()做出修改,它将调用数据读取,数据处理以及数据写入等功能。
首先,从read_data_from_web()中创建data。将data作为参数传入process_data(),之后将返回modified_data。最后,将modified_data传入write_data_to_database()。
脚本的最后两行是条件语块用于验证__name__,并且如果if语句为True,则执行main()。
在命令行中运行如下所示:
根据执行结果,Python解释器在执行main()函数时,将依次执行read_data_from_web(),process_data()以及write_data_to_database()。当然,您也可以导入best_practices.py文件并重用process_data()作为不同的数据输入源,如下所示:
在此示例中,导入了best_practices并且将其简写为bp。
导入过程会导致Python解释器执行best_practices.py的全部代码,因此输出显示解释文件用途的信息。
然后,从文件中存储数据而不是从Web中读取数据。之后,可以重用best_practices.py文件中的process_data()和write_data_to_database()函数。在此情况下,可以利用代码重写来取代在main()函数中实现全部的代码逻辑。
实践总结
以下是Python中main()函数的四个关键最佳实践:
结论
恭喜!您现在已经了解如何创建Python main()函数了。
本文介绍了如下内容:
现在,您可以开始编写一些非常棒的关于Python main()函数代码啦!
‘柒’ python将类作为参数传递
mport sys print sys.argv[1]#保存为main.py#在控制台下输入 python main.py "hello"#就有hello打印出来了 前提是你配置好了环境变量