SQL市场
‘壹’ SQL数据库的应用领域、现状、发展前景
SQL数据库是具有数据操纵和数据定义等多种功能的数据库语言,这种语言具有交互性特点,能为用户提供极大的便利,数据库管理系统应充分利用SQL语言提高计算机应用系统的工作质量与效率。
一、SQL数据库的应用领域
1、多媒体数据库
这种数据库主要存储与多媒体有关的数据,如语音、图像和视频数据。多媒体数据最大的特点是数据连续、数据量大、存储空间大。
2、移动数据库
这种数据库是在笔记本电脑、掌上电脑等移动计算机系统上开发的。数据库的最大特点是通过无线数字通信网络传输。移动数据库可以随时随地获取和访问数据,为一些业务应用和一些突发事件带来了极大的便利。
3、空间数据库
目前,这种数据库发展迅速。它主要包括地理信息数据库(也称为GIS)和计算机辅助设计(CAD)数据库。其中,地理信息数据库一般存储与地图相关的信息数据;CAD数据库一般存储机械、集成电路、电子设备设计图纸等设计信息的空间数据库。
4、信息检索系统
信息检索是根据用户输入的信息从数据库中查找相关文档或信息,并将信息反馈给用户。信息检索领域与数据库领域同步发展。它是一个典型的联机文档管理系统或联机图书目录。
5、分布式信息检索
这种数据库是随着Internet的发展而产生的。它广泛应用于Internet和远程计算机网络系统中。特别是随着电子商务的发展,这种数据库的发展更为迅速。许多网络用户(如个人、公司或企业等)将信息存储在自己的计算机中。
6、专家决策系统
专家决策系统也是数据库应用的一部分。因为越来越多的数据可以在网上获得,特别是通过这些数据,企业可以对企业的发展做出更好的决策,从而使企业能够更好地经营。随着人工智能的发展,专家决策系统的应用越来越广泛。
二、SQL数据库现状
1、自主研发
国内自主研发关系型数据库的企业、单位基本上都是发源于上世纪90年代的,而且都是以大学、科研机构为主。到今天,有代表性的厂商有:达梦–由华中理工冯玉才教授创办,完全自主研发。以Oracle为参照、追赶对象。
2、引进源代码
引进数据库源代码发展国产数据库,如今,经济发展,而且IBM也愿意迎合国人对于国产化的诉求,将搁置多年的Informix源代码拿出来,发挥余热。2015年以来,与IBM签订源代码授权的公司有华胜天成、南大通用(Gbase8t)和星瑞格。这三个公司成为以引进Informix源代码发展国产数据库的代表。
三、SQL数据库发展前景
1、产品形成系列化
一方面,Web和数据仓库等应用的兴起,数据的绝对量在以惊人的速度迅速膨胀;另一方面,移动和嵌入式应用快速增长。针对市场的不同需求,数据库正在朝系列化方向发展。
2、智能化集成化
SQL数据库技术的广泛使用为企业和组织收集并积累了大量的数据。数据丰富知识贫乏的现实直接导致了联机分析处理(OLAP)和数据挖掘(DataMining)等技术的出现,促使数据库向智能化方向发展。
3、支持各种互联网应用
SQL数据库管理系统是网络经济的重要基础设施之一。支持Internet(甚至于MobileInternet)数据库应用已经成为数据库系统的重要方面。例如,Oracle公司从8版起全面支持互联网应用,是互联网数据库的代表。
(1)SQL市场扩展阅读:
SQL包括了所有对数据库的操作,主要是由4个部分组成:
1、数据定义:又称为“DDL语言”,定义数据库的逻辑结构,包括定义数据库、基本表、视图和索引4部分。
2、数据操纵:又称为“DML语言”,包括插入、删除和更新三种操作。
3、数据查询:又称为“DQL语言”,包括数据查询操作。
4、数据控制:又称为“DCL语言”,对用户访问数据的控制有基本表和视图的授权及回收。
5、事务控制:又称为“TCL语言”,包括事务的提交与回滚。
参考资料来源:网络-SQL数据库
‘贰’ 一份难得的数据库市场分析报告
目录
- 数据库分类维度:关系型/非关系型、交易型/分析型
- NoSQL数据库的进一步分类
- OLTP市场规模:关系型数据库仍占营收大头
- 数据库市场份额:云服务和新兴厂商主导NoSQL
- 开源数据库 vs. 商业数据库
- 数据库三大阵营:传统厂商和云服务提供商
最近由于时间原因我写东西少了,在公众号上也转载过几篇搞数据库朋友的大作。按说我算是外行,没资格在这个领域品头论足,而当我看到下面这份报告时立即产生了学习的兴趣,同时也想就能看懂的部分写点心得体会分享给大家。
可能本文比较适合普及性阅读,让数据库领域资深的朋友见笑了:)
数据库分类维度:关系型/非关系型、交易型/分析型
首先是分类维度,上图中的纵轴分类为Relational Database(关系型数据库,RDBMS)和Nonrelational Database (非关系型数据库,NoSQL),横轴的分类为Operational(交易型,即OLTP)和Analytical(分析型,即OLAP)。
按照习惯我们先看关系型数据库,左上角的交易型类别中包括大家熟悉的商业数据库Oracle、MS SQL Server、DB2、Infomix,也包括开源领域流行的MySQL(MariaDB是它的一个分支)、PostgreSQL,还有云上面比较常见的SQL Azure和Amazon Aurora等。
比较有意思的是,SAP HANA正好位于交易型和分析型的中间分界处,不要忘了SAP还收购了Sybase,尽管后者今天不够风光了,而早年微软的SQL Server都是来源于Sybase。Sybase的ASE数据库和分析型Sybase IQ还是存在的。
右上角的分析型产品中包括几款知名的列式数据仓库Pivotal Greenplum、Teradata和IBM Netezza(已宣布停止支持),来自互联网巨头的Google Big Query和Amazon RedShift。至于Oracle Exadata一体机,它上面运行的也是Oracle数据库,其最初设计用途是OLAP,而在后来发展中也可以良好兼顾OLTP,算是一个跨界产品吧。
再来看非关系型数据库,左下角的交易型产品中,有几个我看着熟悉的MongoDB、Redis、Amazon DynamoDB和DocumentDB等;右下角的分析型产品包括着名的Hadoop分支Cloudera、Hortonworks(这2家已并购),Bigtable(来自Google,Hadoop中的HBase是它的开源实现)、Elasticsearch等。
显然非关系型数据库的分类要更加复杂,产品在应用中的差异化也比传统关系型数据库更大。Willian Blair很负责任地对它们给出了进一步的分类。
NoSQL数据库的进一步分类
上面这个图表应该说很清晰了。非关系型数据库可以分为Document-based Store(基于文档的存储)、Key-Value Store(键值存储)、Graph-based(图数据库)、Time Series(时序数据库),以及Wide Cloumn-based Store(宽列式存储)。
我们再来看下每个细分类别中的产品:
文档存储 :MongoDB、Amazon DocumentDB、Azure Cosmos DB等
Key-Value存储 :Redis Labs、Oracle Berkeley DB、Amazon DynamoDB、Aerospike等
图数据库 :Neo4j等
时序数据库 :InfluxDB等
WideCloumn :DataStax、Cassandra、Apache HBase和Bigtable等
多模型数据库 :支持上面不只一种类别特性的NoSQL,比如MongoDB、Redis Labs、Amazon DynamoDB和Azure Cosmos DB等。
OLTP市场规模:关系型数据库仍占营收大头
上面这个基于IDC数据的交易型数据库市场份额共有3个分类,其中深蓝色部分的关系型数据库(RDBMS,在这里不统计数据挖掘/分析型数据库)占据80%以上的市场。
Dynamic Database(DDMS,动态数据库管理系统,同样不统计Hadoop)就是我们前面聊的非关系型数据库。这部分市场显得小(但发展势头看好),我觉得与互联网等大公司多采用开源+自研,而不买商业产品有关。
而遵循IDC的统计分类,在上图灰色部分的“非关系型数据库市场”其实另有定义,参见下面这段文字:
数据库市场份额:云服务和新兴厂商主导NoSQL
请注意,这里的关系型数据库统计又包含了分析型产品。Oracle营收份额42%仍居第一,随后排名依次为微软、IBM、SAP和Teradata。
代表非关系型数据库的DDMS分类中(这里同样加入Hadoop等),云服务和新兴厂商成为了主导,微软应该是因为云SQL Server的基础而小幅领先于AWS,这2家一共占据超过50%的市场,接下来的排名是Google、Cloudera和Hortonworks(二者加起来13%)。
上面是IDC传统分类中的“非关系型数据库”,在这里IBM和CA等应该主要是针对大型机的产品,InterSystems有一款在国内医疗HIS系统中应用的Caché数据库(以前也是运行在Power小机上比较多)。我就知道这些,余下的就不瞎写了。
开源数据库 vs. 商业数据库
按照流行度来看,开源数据库从2013年到现在一直呈现增长,已经快要追上商业数据库了。
商业产品在关系型数据库的占比仍然高达60.5%,而上表中从这列往左的分类都是开源占优:
Wide Cloumn:开源占比81.8%;
时序数据库:开源占比80.7%;
文档存储:开源占比80.0%;
Key-Value存储:开源占比72.2%;
图数据库:开源占比68.4%;
搜索引擎:开源占比65.3%
按照开源License的授权模式,上面这个三角形越往下管的越宽松。比如MySQL属于GPL,在互联网行业用户较多;而PostgreSQL属于BSD授权,国内有不少数据库公司的产品就是基于Postgre哦。
数据库三大阵营:传统厂商和云服务提供商
前面在讨论市场份额时,我提到过交易型数据库的4个巨头仍然是Oracle、微软、IBM和SAP,在这里William Blair将他们归为第一阵营。
随着云平台的不断兴起,AWS、Azure和GCP(Google Cloud Platform)组成了另一个阵营,在国外分析师的眼里还没有BAT,就像有的朋友所说,国内互联网巨头更多是自身业务导向的,在本土发展公有云还有些优势,短时间内将技术输出到国外的难度应该还比较大。(当然我并不认为国内缺优秀的DBA和研发人才)
第三个阵容就是规模小一些,但比较专注的数据库玩家。
接下来我再带大家简单过一下这前两个阵容,看看具体的数据库产品都有哪些。
甲骨文的产品,我相对熟悉一些的有Oracle Database、MySQL以及Exadata一体机。
IBM DB2也是一个庞大的家族,除了传统针对小型机、x86(好像用的人不多)、z/OS大型机和for i的版本之外,如今也有了针对云和数据挖掘的产品。记得抱枕大师对Informix的技术比较推崇,可惜这个产品发展似乎不太理想。
微软除了看家的SQL Server之外,在Azure云上还能提供MySQL、PostgreSQL和MariaDB开源数据库。应该说他们是传统软件License+PaaS服务两条腿走路的。
如今人们一提起SAP的数据库就想起HANA,之前从Sybase收购来的ASE(Adaptive Server Enterprise)和IQ似乎没有之前发展好了。
在云服务提供商数据库的3巨头中,微软有SQL Server的先天优势,甚至把它移植到了Linux拥抱开源平台。关系型数据库的创新方面值得一提的是Amazon Aurora和Google Spanner(也有非关系型特性),至于它们具体好在哪里我就不装内行了:)
非关系型数据库则是Amazon全面开花,这与其云计算业务发展早并且占据优势有关。Google当年的三篇经典论文对业界影响深远,Yahoo基于此开源的Hadoop有一段时间几乎是大数据的代名词。HBase和Hive如今已不再是人们讨论的热点,而Bigtable和BigQuery似乎仍然以服务Google自身业务为主,毕竟GCP的规模比AWS要小多了。
最后这张DB-Engines的排行榜,相信许多朋友都不陌生,今年3月已经不是最新的数据,在这里列出只是给大家一个参考。该排行榜几乎在每次更新时,都会有国内数据库专家撰写点评。
以上是我周末的学习笔记,班门弄斧,希望对大家有帮助。
参考资料《Database Software Market:The Long-Awaited Shake-up》
https://blocksandfiles.com/wp-content/uploads/2019/03/Database-Software-Market-White-Paper.pdf
扩展阅读:《 数据库&存储:互相最想知道的事 》
尊重知识,转载时请保留全文。感谢您的阅读和支持!