当前位置:首页 » 编程语言 » python全局锁

python全局锁

发布时间: 2023-11-17 02:27:59

python多线程只第一个while循环

Python 多线程只执行第一个 while 循环的原因是因为 Python 的全局锁 (GIL) 的存在。GIL 是为了保证多线程操作时不会出现数据竞争和死锁的问题,它会确保在任意时刻只有一个线程在执行 Python 代码。虽然多线程在 Python 中可以提高程序的并发性,但是由于 GIL 的存在,导致 Python 的多线程无法真正地实现并行计算。因此,在 Python 中,多线程适合于 IO 密集型任务,而不适合于 CPU 密集型任务。

对于如何解决多线程只执行第一个 while 循环的问题,可以使用多进程和协程来代替多线程。多进程可以在不同的进程中运行 Python 代码,每个进程都有自己的 GIL,因此可以实现真正的并行计算。而协程则是一种轻量级的线程,它不需要像线程一样占用系统资源,只需要在程序内部切换来实现并发计算皮渣。悔睁因此,在 Python 中,多进程和协程都是比较好的并发编程方式。

需要注意的是,多线程虽然存在 GIL 的限制,但对于一些 IO 密集型任务,多线程仍然可以提高程序的并发能力,因为在 IO 操作时,线程会释放 GIL,从而可以让其他线程进入运行状态。因此,在实际编程中,需要燃前悄根据具体的任务需求,选择合适的并发编程方式。

② Python编程面试常见问题有哪些

Python编程面试题目一:python下多线程的限制以及多进程中传递参数的方式,以及区别


(1)python下多线程的限制以及多进程中传递参数的方式


python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是“并行”。


多进程间共享数据,可以使用 multiprocessing.Value 和 multiprocessing.Array


(2)python多线程与多进程的区别


在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。


多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。



Python编程面试题目二:lambada函数


lambda 函数是一个可以接收任意多个参数(包括可选参数)并且返回单个表达式值的函数。 lambda 函数不能包含命令,它们所包含的表达式不能超过一个。不要试图向lambda 函数中塞入太多的东西;如果你需要更复杂的东西,应该定义一个普通函数,然后想让它多长就多长。


更多关于Python编程的技巧,干货,资讯等内容,小编会持续更新。

③ python多线程全局变量和锁

1.python中数据类型,int,float,复数,字符,元组,做全局变量时需要在函数里面用global申明变量,才能对变量进行操作。

而,对象,列表,词典,不需要声明,直接就是全局的。

2.线程锁mutex=threading.Lock()

创建后就是全局的。线程调用函数可以直接在函数中使用。

mutex.acquire()开启锁

mutex=release()关闭锁

要注意,死锁的情况发生。

注意运行效率的变化:

正常1秒,完成56997921

加锁之后,1秒只运行了531187,相差10倍多。

3.继承.threading.Thread的类,无法调用__init__函数,无法在创建对象时初始化新建的属性。

4.线程在cpu的执行,有随机性

5. 新建线程时,需要传参数时,args是一个元组,如果只有一个参数,一定后面要加一个,符号。不能只有一个参数否则线程会报创建参数错误。threading.Thread(target=fuc,args=(arg,))

④ python multiprocessing问题,为什么输出结果和预期不一样

众所周知,由于python(Cpython)的全局锁(GIL)问题存在,导致Thread也就是线程的并行并不可实现。 multiprocessing 模块采用多进程而不是多线程的方式实现并行,解决了GIL的问题,一定程度上使状况得到了缓解。

然而,Multiprocess本身依然有一些功能上的瓶颈。其中一个重要的是:进程之间不能共享内存(线程间则可以共享内存)。这意味着在进程间交换数据的时候,需要把数据打包、传递,解包。在python的语境下就是:

"pickle from main process to the subprocess;

depickle from subprocess to an object in memory;

pickle and return to the main process;

depickle from main process and return to memory"

(具体详见这个问题下的吐槽)

因此, 在需要在进程间共享巨大的数据包的时候,多进程的表现还不如单进程。

除此之外,当需要运行的程序本身不是计算密集型而是是IO密集型,多进程所增加的读写会抵消掉运算速度的增益;如果程序复杂度根本不需要用并行来解决,那么建立进程(池)的时间很可能比运行程序本身还要慢;另外,在进程池 multiprocessing.Pool(n) 的 n 的选择上,如果选择了多于当前CPU的核心数目的数字( multiprocessing.cpu_count() ),那么在进程之间切换的功夫会大大拉低效率。

建立对线程和进程关系的直观印象,可参考这篇文章。

快速而完整地了解python的全局锁(GIL)问题,参考这篇不错的博客。

为了解 multiprocess 的使用,我做了一些测试,测试环境是4核的Macbook Air。如下:

from multiprocessing import Process, Manager, Pool

1 def f(l):
2 l.reverse()
3
return
4
5 def main():
6
l1 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
7
l2 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
8
l3 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
9
l4 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
10
l5 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
11
l6 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
12
l7 = [random.randrange(0, 100000, 1) for i in range(0, 100000)]
13
s = time.time()
14
for l in [l1, l2, l3, l4, l5, l6, l7]:
15
f(l)
16
print "%s seconds" % (time.time() - s)
17
s = time.time()
18 map(f, [l1, l2, l3, l4, l5, l6, l7])
19
print "%s seconds" % (time.time() - s)
20
p = Pool(4)
21
s = time.time()
22 p.map(f, [l1, l2, l3, l4, l5, l6, l7])
23
print "%s seconds" % (time.time() - s)
24
return

也就是分别测试 f() 对 l1, l2, l3, l4, l5, l6, l7 7个列表的操作时间。先是循环的依次操作,再是python中非常好用的 map() 函数,最后是 multiprocessing 的进程池 multiprocessing.Pool.map() ——进程池中建立了4个 worker process , 也就是说,接下来的任务会被随机地分配给4个进程来完成。

每次操作之前都重新计时,得到了这样的结果:

>>> main()
0.00250101089478 seconds
0.000663995742798 seconds
0.907639980316 seconds

多进程出奇得慢。而 map() 相对于循环操作有很大的效率提升。

⑤ Python有什么缺点呢

1. - 运行速度慢,因为Python是解释型语言,是一种高级语言,代码会在执行的时候,一行一行的使用解释器翻译成底层代码,翻译成机器码,而这个过程非常耗时,所以他运行过程中,比很多语言的代码都慢了很多。
- 线程不能利用多CPU,这是Python最大的确定,GIL即全局解释器锁(Global Interpreter Lock),是计算机程序设计语言解释器用于同步线程的工具,使得任何时刻仅有一个线程在执行,Python的线程是操作系统的原生线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。
Python的优缺点可以看看传智播客的社区,里面很多技术老师写的相关文章。并且有学习线路图适合小白学习,每个板块下面都有配套视频。

热点内容
dz上传的图片不显示 发布:2025-01-28 09:37:42 浏览:886
joinsql多表 发布:2025-01-28 09:23:26 浏览:728
php数组循环赋值 发布:2025-01-28 09:23:25 浏览:133
android42系统 发布:2025-01-28 09:21:59 浏览:901
菜单设计c语言 发布:2025-01-28 09:21:54 浏览:273
sql多表查询优化 发布:2025-01-28 09:21:05 浏览:502
iphone6便捷访问 发布:2025-01-28 09:05:11 浏览:176
四位验证密码是多少 发布:2025-01-28 08:56:13 浏览:808
笔记本显卡如何配置 发布:2025-01-28 08:49:49 浏览:602
为什么安卓会有卸载残留 发布:2025-01-28 08:32:00 浏览:89