java责任链模式
① java开发中的23种设计模式详解(转)_Java开发模式
设计模式(Design Patterns)
——可复用面向对象软件的基础
设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。
毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程猜模唤化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。
一、设计模式的分类
总体来说设计模式分为三大类:
创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
结构型模式,共七种:适配器模式、装饰器模式、代理模式、码敬外观模式、桥接模式、组合模式、享元模式。
行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:
二、设计模式的六大原则
1、开闭原则(Open Close Principle)
开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。
2、里氏代换原则(Liskov Substitution Principle)
里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。
里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。
LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Bai 网络
3、依赖倒转原则(Dependence Inversion Principle)
这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。
4、接口隔离原则(Interface Segregation Principle)
这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。
5、迪米特法则(最少知道原则)(Demeter Principle)
为什么叫最少知道原则,就是说:一个实体应当尽量穗凯少的与其他实体之间发生相互作用,使得系统功能模块相对独立。
6、合成复用原则(Composite Reuse Principle)
原则是尽量使用合成/聚合的方式,而不是使用继承。
三、Java的23中设计模式
从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。
1、工厂方法模式(Factory Method)
工厂方法模式分为三种:
11、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:
举例如下:(我们举一个发送邮件和短信的例子)
首先,创建二者的共同接口:
[java]view plain publicinterfaceSender{publicvoidSend();}
其次,创建实现类:
[java]view plain {@OverridepublicvoidSend(){System.out.println("thisismailsender!");}} [java]view plain {@OverridepublicvoidSend(){System.out.println("thisissmssender!");}}
最后,建工厂类:
[java]view plain publicclassSendFactory{publicSenderproce(Stringtype){if("mail".equals(type)){returnnewMailSender();}elseif("sms".equals(type)){returnnewSmsSender();}else{System.out.println("请输入正确的类型!");returnnull;}}}
我们来测试下:
publicclassFactoryTest{publicstaticvoidmain(String[]args){SendFactoryfactory=newSendFactory();Sendersender=factory.proce("sms");sender.Send();}}
输出:this is sms sender!
22、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:
将上面的代码做下修改,改动下SendFactory类就行,如下:
[java]view plainpublicclassSendFactory{publicSenderproceMail(){ returnnewMailSender();}publicSenderproceSms(){returnnewSmsSender();}}
测试类如下:
[java]view plain publicclassFactoryTest{publicstaticvoidmain(String[]args){SendFactoryfactory=newSendFactory();Sendersender=factory.proceMail();sender.Send();}}
输出:this is mailsender!
33、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。
[java]view plain publicclassSendFactory{publicstaticSenderproceMail(){returnnewMailSender();}publicstaticSenderproceSms(){returnnewSmsSender();}} [java]view plain publicclassFactoryTest{publicstaticvoidmain(String[]args){Sendersender=SendFactory.proceMail();sender.Send();}}
输出:this is mailsender!
总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。
2、抽象工厂模式(Abstract Factory)
工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。
请看例子:
[java]view plain publicinterfaceSender{publicvoidSend();}
两个实现类:
[java]view plain {@OverridepublicvoidSend(){System.out.println("thisismailsender!");}} [java]view plain {@OverridepublicvoidSend(){System.out.println("thisissmssender!");}}
两个工厂类:
[java]view plain {@OverridepublicSenderproce(){returnnewMailSender();}} [java]view plain {@OverridepublicSenderproce(){returnnewSmsSender();}}
在提供一个接口:
[java]view plain publicinterfaceProvider{publicSenderproce();}
测试类:
[java]view plain publicclassTest{publicstaticvoidmain(String[]args){Providerprovider=newSendMailFactory();Sendersender=provider.proce();sender.Send();}}
其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!
3、单例模式(Singleton)
单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:
1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。
首先我们写一个简单的单例类:
[java]view plain publicclassSingleton{/*持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载*/=null;/*私有构造方法,防止被实例化*/privateSingleton(){}/*静态工程方法,创建实例*/(){if(instance==null){instance=newSingleton();}returninstance;}/*如果该对象被用于序列化,可以保证对象在序列化前后保持一致*/publicObjectreadResolve(){returninstance;}}
这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:
[java]view plain (){if(instance==null){instance=newSingleton();}returninstance;}
但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:
[java]view plain (){if(instance==null){synchronized(instance){if(instance==null){instance=newSingleton();}}}returninstance;}
似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:
a>A、B线程同时进入了第一个if判断
b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();
c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。
d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。
e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。
所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:
[java]view plain {=newSingleton();}(){returnSingletonFactory.instance;}
实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:
[java]view plain publicclassSingleton{/*私有构造方法,防止被实例化*/privateSingleton(){}/*此处使用一个内部类来维护单例*/{=newSingleton();}/*获取实例*/(){returnSingletonFactory.instance;}/*如果该对象被用于序列化,可以保证对象在序列化前后保持一致*/publicObjectreadResolve(){returngetInstance();}}
其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:
[java]view plain publicclassSingletonTest{=null;privateSingletonTest(){}(){if(instance==null){instance=newSingletonTest();}}(){if(instance==null){syncInit();}returninstance;}}
考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。
补充:采用"影子实例"的办法为单例对象的属性同步更新
[java]view plain publicclassSingletonTest{=null;privateVectorproperties=null;publicVectorgetProperties(){returnproperties;}privateSingletonTest(){}(){if(instance==null){instance=newSingletonTest();}}(){if(instance==null){syncInit();}returninstance;}publicvoipdateProperties(){SingletonTestshadow=newSingletonTest();properties=shadow.getProperties();}}
通过单例模式的学习告诉我们:
1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。
2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。
到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?
首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)
其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。
再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。
最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!
4、建造者模式(Builder)
工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。我们看一下代码:
还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下: [java]view plain publicclassBuilder{privateList list=newArrayList ();publicvoidproceMailSender(intcount){for(inti=0;i0){pos--;}returncollection.get(pos);}@OverridepublicObjectnext(){if(pos
② JAVA23种设计模式
一、大约分为三类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
二、设计模式遵循的原则有6个:
1、开闭原则(Open Close Principle)
对扩展开放,对修改关闭。
2、里氏代换原则(Liskov Substitution Principle)
只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。
3、依赖倒转原则(Dependence Inversion Principle)
这个是开闭原则的基础,对接口编程,依赖于抽象而不依赖于具体。
4、接口隔离原则(Interface Segregation Principle)
使用多个隔离的借口来降低耦合度。
5、迪米特法则(最少知道原则)(Demeter Principle)
一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。
6、合成复用原则(Composite Reuse Principle)
原则是尽量使用合成/聚合的方式,而不是使用继承。继承实际上破坏了类的封装性,超类的方法可能会被子类修改。
③ java常用的的设计模式和开发模式都有哪些
设计模式主要分三个类型、创建型、结构型和行为型。设计模式分:3种类型及23种模式。
JAVA中的开发模式:MVC是一个很常用的程序开发设计模式,M-Model(模型):封装应用程序的状态;V-View(视图):表示用户界面;C-Controller(控制器):对用户的输入作出反应,创建并设置模型。
(3)java责任链模式扩展阅读
创建型模式:单例模式、抽象工厂模式、建造者模式、工厂模式、原型模式。
结构型模式:适配器模式、桥接模式、装饰模式、组合模式、外观模式、享元模式、代理模式。
行为型模式:模版方法模式、命令模式、迭代器模式、观察者模式、中介者模式、备忘录模式、解释器模式(Interpreter模式)、状态模式、策略模式、职责链模式(责任链模式)、访问者模式。
④ java常用的设计模式一共有多少种
1、正如上一位答主所言,java中存在23种面向对象的设计模式,分别是:
1)创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
2)结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
3)行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
2、他们遵从如下原则:
1)单一职责原则
2)里式替换原则
3)依赖倒置原则
4)接口隔离原则
5)迪米特法则
6)开闭原则
3、如果非要用几个简单的字来概括这繁杂的23种设计模式那就是“高内聚,低耦合”。
4、网络--23种设计模式,边研究原理,边敲代码,其义自见。
⑤ 网络请求框架-OkHttp原理解析
okhttp是square公司贡献的一个处理网络请求的开源框架,是目前Android开发使用最广泛的一个网络框架,从Android4.4开始,httpURLconnection的底层实现采用的就是okhttp。内部实现就是利用java基础,对socket进行封装,实现http通信。最重要的两个关键点就是分发器和5个拦截器。
分发器 就是内部维护队列和线程池,完成请求分配,总结就是用于对异步任务加入队列管理,然后判断条件,控制数量,加入线程池执行异步请求任务。
五个默认拦截器 就是利用责任链模式对网络请求进行层层处理,完成整个请求过程,简单总结如下。
1.桥接拦截器对用户发出的请求添加缺少的请求配置字段,比如keep-alive等
2.缓存拦截器就是查询有没有符合判断条件的已缓存的网络请求,执行复用,直接返回response
3.连接拦截器就是创建请求,加入连接器 或者访问连接池,根据条件判断,是否能怼已创建的tcp请求进行复用
4.请求服务器拦截器就是对scoket进行操作,请求网络访问服务器,返回response,
5.重试和重定向拦截器就是对返回的response进行code判断,决定是否要重试或者重定向操作。
1.支持http2.0版本,并且允许对同一主机的所有请求共享一个套接字
2.即使不是http2.0版本,通过连接池,减少请求延迟
3.默认使用Gzip 压缩数据
4.响应缓存,避免重复请求网络
最简单的http请求案例
1.利用建造者模式构建okHttpClient实例对象,构建过程中可以动态配置参数,请求时间,响应时间,缓存信息等。
2.创建Request对象,设置请求方式,链接地址,参数等信息。
3.把request对象,传给client,通过newCall函数,得到RealCall对象。
4.RealCall 分为同步和异步执行
5.同步执行时,分发器只是做个记录,把请求任务加到队列中,然后直接通过拦截器访问服务器,返回response。
6.异步执行
6.1先对异步任务进一步封装,把任务放到AsyncCall对象中
2.分发器 把 封装后的异步任务 添加到等待运行的队列中
7. 通过拦截器,获取response
okhttp 默认提供5个拦截器 重试重定向拦截器,桥接拦截器,缓存拦截器,连接拦截器,访问服务器拦截器。还可以自定义拦截器。
自定义拦截器分为应用拦截器(通过addInterceptor 添加)和网络拦截器(通过addNetworkInterceptor拦截)
拦截器采用责任链的设计默认,让请求者和处理者解耦,最终请求从前往后,响应从后往前。
首先先判断用户是否取消了请求,如果没有取消,就把请求交个桥接拦截器。
在获得响应结果response的时候根据响应码,判断是否需要重试或者重定向, 重试不限制次数,重定向最多20次 ,如果需要重试或者重定向,那么会再一次重新执行所有拦截器。
有如下几种情况不会重试:IO异常,线路异常,配置client实例时配置不允许重试,协议异常,证书异常等等。
先获取用户发送的请求,判断条件用户是否已经配置过请求头字段,若用户没有配置,则将http协议必备的请求头字段补齐,比如Content-Type,Content-Length等,然后交给下一个拦截器。
在获得响应结果response之后,调用保存cookie的接口(也可以在配置client的时候,设置cookjar进行cookie回调数据),并且解析gzip数据
获取结果之后,对cookie进行保存,对返回的数据进行gzip解压
就是根据缓存策略从缓存中查找是否有合适的缓存response,如果有合适的缓存,直接返回给请求任务,不在继续执行后面的拦截器。
获得响应结果response后,根据条件判断,决定是否要缓存。
维护一个连接池,负责对连接的服务。在把请求交给下一个拦截器之前。会先在连接池中找到一个合适的连接(满足适配条件相同,并且没有正在被使用)或者新建一个连接,并且接入连接池,获得对应的socket流,把请求交给下一个拦截器。获得response结果后不会进行额外的处理。
连接池, 也称之为对象池,主要用来存放request请求连接,内部维护了一个LinkedQueue队列用来存放请求。在添加新的请求对象时,都会执行一个周期性任务,用以对连接池进行清理操作。
1.队列长度超过5,清理最近未被使用连接,LRE算法
2.存储的连接,5分钟未被复用,清理
拿到上一个拦截器返回的请求,真正的与服务器进行通信,向服务器发送数据,解析读取响应的数据,返回给上一个拦截器。
1.创建request =>OkHttpClient=>RealCall()
2.同步执行 ,分发器添加同步任务,执行拦截器,访问服务器,返回reponse,触发异步分发流程。
3.异步执行 ,封装任务= >AsyncCall ,实现runnable接口。添加任务到异步任务等待队列,执行分发任务,判断异步任务是否能加入正在执行的异步任务队列,满足两个条件
同时执行的异步任务数量不得大于64个
对同一个主机的访问任务,最多不得大于5个
4.加入正在执行的异步任务队列,通过线程池执行任务,经过5个默认拦截器访问服务器,返回response,执行异步任务分发。
分发器工作 分为同步任务和异步任务两种
同步任务 就是把任务加入同步任务队列,加个标记,执行结束之后,触发异步任务的分发操作。
异步任务 先封装任务到asyncCall对象,实现了runnable接口。把任务加入等待执行队列,执行分发操作。
先遍历等待任务队列,判断是否符合加入正在运行的异步任务队列,要同时满足两个条件。
同时执行的异步任务数量不得大于64个
对同一个主机的访问任务,最多不得大于5个
当满足条件后,从等待队列中删除任务,把任务加入正在执行的队列中,通过自定义的线程池,执行任务,任务执行结束后,再次执行分发操作。
拦截器采用了责任链设计默认,让请求者和执行者解耦,请求者只需要将请求发给责任链即可,无需关心请求过程和细节。okHttp 默认有5个拦截器,重试重定向拦截器,桥接拦截器,缓存拦截器,连接拦截器,请求服务拦截器。工作细节参考上面拦截器原理分析部分
1.位置的关系,应用拦截器 放在责任链最顶端,网络拦截器放在责任链倒数第二的位置。所以应用拦截器 最先拦截,最后响应,网络拦截器 倒数第二拦截,第二响应。如果打印请求日志的情况,应用拦截器打印的是用户请求信息,经过重试重定向,桥接,缓存,链接 等拦截器的层层包装,网络拦截器打印的是实际请求的信息。
2.应用拦截器一定会被执行,网络拦截器不一定被执行。
利用连接池,缓存所有的有效连接对象。
清理机制:垃圾连接
1.超过5分钟没有用过的链接
2.超过5个闲置链接后,从最久闲置的链接开始执行清理(LRU)
⑥ java中都有哪些设计模式
大致有23种
都是表示类与类之间的构架关系 也就是表示对象的逻辑关系
设计模式根据使用类型可以分为三种:
1、 创建模式:工厂模式、单子模式、建造者模式、原型模式、工厂方法模式。
2、 结构模式:外观模式、代理模式、适配器模式、组合模式、装饰模式、桥模式、
共享模式。
3、 行为模式:模板模式、纪念品模式、观察者模式、责任链模式、命令模式、声明模式、
策略模式、中介模式、解释器模式、访问模式
说白了模式就是前人经过大量的实践,总结出来的优化的对象关系 你也可以自己总结出来
⑦ 有哪些JAVA设计模式呢
1、工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:如何创建及如何向客户端提供。
2、建造模式:将产品的内部表象和产品的生成过程分割开来,从而使一个建造过程生成具有不同的内部表象的产品对象。建造模式使得产品内部表象可以独立的变化,客户不必知道产品内部组成的细节。建造模式可以强制实行一种分步骤进行的建造过程。
3、工厂方法模式:核心工厂类不再负责所有产品的创建,而是将具体创建的工作交给子类去做,成为一个抽象工厂角色,仅负责给出具体工厂类必须实现的接口,而不接触哪一个产品类应当被实例化这种细节。
4、原始模型模式:通过给出一个原型对象来指明所要创建的对象的类型,然后用复制这个原型对象的方法创建出更多同类型的对象。原始模型模式允许动态的增加或减少产品类,产品类不需要非得有任何事先确定的等级结构,原始模型模式适用于任何的等级结构。缺点是每一个类都必须配备一个克隆方法。
5、单例模式:单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例单例模式。单例模式只应在有真正的“单一实例”的需求时才可使用。
6、适配器(变压器)模式:把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口原因不匹配而无法一起工作的两个类能够一起工作。适配类可以根据参数返还一个合适的实例给客户端。
7、桥梁模式:将抽象化与实现化脱耦,使得二者可以独立的变化,也就是说将他们之间的强关联变成弱关联,也就是指在一个软件系统的抽象化和实现化之间使用组合/聚合关系而不是继承关系,从而使两者可以独立的变化。
8、合成模式:合成模式将对象组织到树结构中,可以用来描述整体与部分的关系。合成模式就是一个处理对象的树结构的模式。合成模式把部分与整体的关系用树结构表示出来。合成模式使得客户端把一个个单独的成分对象和由他们复合而成的合成对象同等看待。
9、装饰模式:装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案,提供比继承更多的灵活性。动态给一个对象增加功能,这些功能可以再动态的撤消燃雀。增加由一些基本功能的排列组合而产生的非常大量的功能。
10、门面模式:外部与一个子系统的通信必须通过一个统一的门面对象进行。门面模式提供一个高层次的接口,使得子系统更易于使用。每一个子系统只有一个门面类,而且此门面类只有一个实例,也就是说它是一个单例模式。但整个系统可以有多个门面类。
11、享元模式:FLYWEIGHT在拳击比赛中指最轻量级。享元模式以共享的方式高效的支持大量的细粒度对象。享元模式能做到共享的关键是区分内蕴状态和外蕴状态。内蕴状态存储在享元内部,不会随环境的改变而有所不同。外蕴状态是随环境的改变而改变的。外蕴状态不能影响内蕴状态,它们是相互独立的。将可以共享的状态和不可以共享的状态从常规类中区分开来,将不可以共享的状态从类里剔除出去。客户端不可以直接创简段山建被共享的对象,而应当使用一个工厂对象负责创建被共享的对象。享元模式大幅度的降低内存中对象的数量。
12、代理模式:代理模式给某一个对象提供一个代理对象,并由代理对象控制对源对象的引用。代理就是一个人或一个机构代表拦中另一个人或者一个机构采取行动。某些情况下,客户不想或者不能够直接引用一个对象,代理对象可以在客户和目标对象直接起到中介的作用。客户端分辨不出代理主题对象与真实主题对象。代理模式可以并不知道真正的被代理对象,而仅仅持有一个被代理对象的接口,这时候代理对象不能够创建被代理对象,被代理对象必须有系统的其他角色代为创建并传入。
13、责任链模式:在责任链模式中,很多对象由每一个对象对其下家的引用而接
起来形成一条链。请求在这个链上传递,直到链上的某一个对象决定处理此请求。客户并不知道链上的哪一个对象最终处理这个请求,系统可以在不影响客户端的情况下动态的重新组织链和分配责任。处理者有两个选择:承担责任或者把责任推给下家。一个请求可以最终不被任何接收端对象所接受。
14、命令模式:命令模式把一个请求或者操作封装到一个对象中。命令模式把发出命令的责任和执行命令的责任分割开,委派给不同的对象。命令模式允许请求的一方和发送的一方独立开来,使得请求的一方不必知道接收请求的一方的接口,更不必知道请求是怎么被接收,以及操作是否执行,何时被执行以及是怎么被执行的。系统支持命令的撤消。
15、解释器模式:给定一个语言后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。解释器模式将描述怎样在有了一个简单的文法后,使用模式设计解释这些语句。在解释器模式里面提到的语言是指任何解释器对象能够解释的任何组合。在解释器模式中需要定义一个代表文法的命令类的等级结构,也就是一系列的组合规则。每一个命令对象都有一个解释方法,代表对命令对象的解释。命令对象的等级结构中的对象的任何排列组合都是一个语言。
16、迭代子模式:迭代子模式可以顺序访问一个聚集中的元素而不必暴露聚集的内部表象。多个对象聚在一起形成的总体称之为聚集,聚集对象是能够包容一组对象的容器对象。迭代子模式将迭代逻辑封装到一个独立的子对象中,从而与聚集本身隔开。迭代子模式简化了聚集的界面。每一个聚集对象都可以有一个或一个以上的迭代子对象,每一个迭代子的迭代状态可以是彼此独立的。迭代算法可以独立于聚集角色变化。
17、调停者模式:调停者模式包装了一系列对象相互作用的方式,使得这些对象不必相互明显作用。从而使他们可以松散偶合。当某些对象之间的作用发生改变时,不会立即影响其他的一些对象之间的作用。保证这些作用可以彼此独立的变化。调停者模式将多对多的相互作用转化为一对多的相互作用。调停者模式将对象的行为和协作抽象化,把对象在小尺度的行为上与其他对象的相互作用分开处理。
18、备忘录模式:备忘录对象是一个用来存储另外一个对象内部状态的快照的对象。备忘录模式的用意是在不破坏封装的条件下,将一个对象的状态捉住,并外部化,存储起来,从而可以在将来合适的时候把这个对象还原到存储起来的状态。
19、观察者模式:观察者模式定义了一种一队多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态上发生变化时,会通知所有观察者对象,使他们能够自动更新自己。
20、状态模式:状态模式允许一个对象在其内部状态改变的时候改变行为。这个对象看上去象是改变了它的类一样。状态模式把所研究的对象的行为包装在不同的状态对象里,每一个状态对象都属于一个抽象状态类的一个子类。状态模式的意图是让一个对象在其内部状态改变的时候,其行为也随之改变。状态模式需要对每一个系统可能取得的状态创立一个状态类的子类。当系统的状态变化时,系统便改变所选的子类。
21、策略模式:策略模式针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。策略模式把行为和环境分开。环境类负责维持和查询行为类,各种算法在具体的策略类中提供。由于算法和环境独立开来,算法的增减,修改都不会影响到环境和客户端。
22、模板方法模式:模板方法模式准备一个抽象类,将部分逻辑以具体方法以及具体构造子的形式实现,然后声明一些抽象方法来迫使子类实现剩余的逻辑。不同的子类可以以不同的方式实现这些抽象方法,从而对剩余的逻辑有不同的实现。先制定一个顶级逻辑框架,而将逻辑的细节留给具体的子类去实现。
23、访问者模式:访问者模式的目的是封装一些施加于某种数据结构元素之上的操作。一旦这些操作需要修改的话,接受这个操作的数据结构可以保持不变。访问者模式适用于数据结构相对未定的系统,它把数据结构和作用于结构上的操作之间的耦合解脱开,使得操作集合可以相对自由的演化。访问者模式使得增加新的操作变的很容易,就是增加一个新的访问者类。访问者模式将有关的行为集中到一个访问者对象中,而不是分散到一个个的节点类中。当使用访问者模式时,要将尽可能多的对象浏览逻辑放在访问者类中,而不是放到它的子类中。访问者模式可以跨过几个类的等级结构访问属于不同的等级结构的成员类。