dijkstra算法c语言实现
① 怎样用DIJKSTRA算法设计最短路径
以下................
输入时,将s,t,x,y,z五个点按照1,2,3,4,5起别名,输入格式按照下图例所示
当提示Please enter the vertex where Dijkstra algorithm starts:时输入算法的起始点
比如计算结果v1v4v2表示从点1到点2经过1,4,2为最短路径
Dijkstra算法的完整实现版本,算法的源代码
/* Dijkstra.c
Copyright (c) 2002, 2006 by ctu_85
All Rights Reserved.
*/
#include "stdio.h"
#include "malloc.h"
#define maxium 32767
#define maxver 9 /*defines the max number of vertexs which the programm can handle*/
#define OK 1
struct Point
{
char vertex[3];
struct Link *work;
struct Point *next;
};
struct Link
{
char vertex[3];
int value;
struct Link *next;
};
struct Table /*the workbannch of the algorithm*/
{
int cost;
int Known;
char vertex[3];
char path[3];
struct Table *next;
};
int Dijkstra(struct Point *,struct Table *);
int PrintTable(int,struct Table *);
int PrintPath(int,struct Table *,struct Table *);
struct Table * CreateTable(int,int);
struct Point * FindSmallest(struct Table *,struct Point *);/*Find the vertex which has the smallest value reside in the table*/
int main()
{
int i,j,num,temp,val;
char c;
struct Point *poinpre,*poinhead,*poin;
struct Link *linpre,*linhead,*lin;
struct Table *tabhead;
poinpre=poinhead=poin=(struct Point *)malloc(sizeof(struct Point));
poin->next=NULL;
poin->work=NULL;
restart:
printf("Notice:if you wanna to input a vertex,you must use the format of number!\n");
printf("Please input the number of points:\n");
scanf("%d",&num);
if(num>maxver||num<1||num%1!=0)
{
printf("\nNumber of points exception!");
goto restart;
}
for(i=0;i<num;i++)
{
printf("Please input the points next to point %d,end with 0:\n",i+1);
poin=(struct Point *)malloc(sizeof(struct Point));
poinpre->next=poin;
poin->vertex[0]='v';
poin->vertex[1]='0'+i+1;
poin->vertex[2]='\0';
linpre=lin=poin->work;
linpre->next=NULL;
for(j=0;j<num-1;j++)
{
printf("The number of the %d th vertex linked to vertex %d:",j+1,i+1);
scanf("%d",&temp);
if(temp==0)
{
lin->next=NULL;
break;
}
else
{
lin=(struct Link *)malloc(sizeof(struct Link));
linpre->next=lin;
lin->vertex[0]='v';
lin->vertex[1]='0'+temp;
lin->vertex[2]='\0';
printf("Please input the value betwixt %d th point towards %d th point:",i+1,temp);
scanf("%d",&val);
lin->value=val;
linpre=linpre->next;
lin->next=NULL;
}
}
poinpre=poinpre->next;
poin->next=NULL;
}
printf("Please enter the vertex where Dijkstra algorithm starts:\n");
scanf("%d",&temp);
tabhead=CreateTable(temp,num);
Dijkstra(poinhead,tabhead);
PrintTable(temp,tabhead);
return OK;
}
struct Table * CreateTable(int vertex,int total)
{
struct Table *head,*pre,*p;
int i;
head=pre=p=(struct Table *)malloc(sizeof(struct Table));
p->next=NULL;
for(i=0;i<total;i++)
{
p=(struct Table *)malloc(sizeof(struct Table));
pre->next=p;
if(i+1==vertex)
{
p->vertex[0]='v';
p->vertex[1]='0'+i+1;
p->vertex[2]='\0';
p->cost=0;
p->Known=0;
}
else
{
p->vertex[0]='v';
p->vertex[1]='0'+i+1;
p->vertex[2]='\0';
p->cost=maxium;
p->Known=0;
}
p->next=NULL;
pre=pre->next;
}
return head;
}
int Dijkstra(struct Point *p1,struct Table *p2) /* Core of the programm*/
{
int costs;
char temp;
struct Point *poinhead=p1,*now;
struct Link *linna;
struct Table *tabhead=p2,*searc,*result;
while(1)
{
now=FindSmallest(tabhead,poinhead);
if(now==NULL)
break;
result=p2;
result=result->next;
while(result!=NULL)
{
if(result->vertex[1]==now->vertex[1])
break;
else
result=result->next;
}
linna=now->work->next;
while(linna!=NULL) /* update all the vertexs linked to the signed vertex*/
{
temp=linna->vertex[1];
searc=tabhead->next;
while(searc!=NULL)
{
if(searc->vertex[1]==temp)/*find the vertex linked to the signed vertex in the table and update*/
{
if((result->cost+linna->value)<searc->cost)
{
searc->cost=result->cost+linna->value;/*set the new value*/
searc->path[0]='v';
searc->path[1]=now->vertex[1];
searc->path[2]='\0';
}
break;
}
else
searc=searc->next;
}
linna=linna->next;
}
}
return 1;
}
struct Point * FindSmallest(struct Table *head,struct Point *poinhead)
{
struct Point *result;
struct Table *temp;
int min=maxium,status=0;
head=head->next;
poinhead=poinhead->next;
while(head!=NULL)
{
if(!head->Known&&head->cost<min)
{
min=head->cost;
result=poinhead;
temp=head;
status=1;
}
head=head->next;
poinhead=poinhead->next;
}
if(status)
{
temp->Known=1;
return result;
}
else
return NULL;
}
int PrintTable(int start,struct Table *head)
{
struct Table *begin=head;
head=head->next;
while(head!=NULL)
{
if((head->vertex[1]-'0')!=start)
PrintPath(start,head,begin);
head=head->next;
}
return OK;
}
int PrintPath(int start,struct Table *head,struct Table *begin)
{
struct Table *temp=begin->next,*p,*t;
p=head;
t=begin;
if((p->vertex[1]-'0')!=start&&p!=NULL)
{
while(temp->vertex[1]!=p->path[1]&&temp!=NULL)
temp=temp->next;
PrintPath(start,temp,t);
printf("%s",p->vertex);
}
else
if(p!=NULL)
printf("\n%s",p->vertex);
return OK;
}
② 求如下有向图的关键路径以及任意两点之间的最短距离
用CPM算法求有向图的关键路径和用Dijkstra算法求有向图的最短路径的c语言程序如下
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>
#define MAX 20
#define INF 32767 // 此处修改最大值
#define nLENGTH(a) (sizeof(a)/sizeof(a[0]))
#define eLENGTH(a) (sizeof(a)/sizeof(char))/(sizeof(a[0])/sizeof(char))
typedef struct _graph{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
//指向节点的位置
int point_node(PGraph g,char c){
for(int i=0;i<g->vexnum;i++){
if(g->vexs[i]==c){
return i;
}
}
return -1;
}
PGraph create_graph(int b[][3],char a[],int n,int e){
char c1,c2; //边的2个顶点
PGraph g; //矩阵
g=(PGraph)malloc(sizeof(Graph));
//memset()第一个参数 是地址,第二个参数是开辟空间的初始值,第三个参数是开辟空间的大小
memset(g, 0, sizeof(Graph));
printf("顶点个数: ");//顶点数
g->vexnum=n;
printf("%d ",g->vexnum);
printf("边个数: ");//边数
g->edgnum=e;
printf("%d ",g->edgnum);
//初始化顶点
for(int j=0;j<g->vexnum;j++){
g->vexs[j]=a[j];
}
for(int i=0;i<g->edgnum;i++){
int p1,p2;
c1=char(b[i][0]);
c2=char(b[i][1]);
p1=point_node(g, c1);
p2=point_node(g, c2);
if (p1==-1 || p2==-1){
printf("input error: invalid edge! ");
free(g);
continue;
}
g->matrix[p1][p2]=b[i][2];
}
for(int i=0;i<g->vexnum;i++){
for(int j=0;j<g->vexnum;j++){
if(g->matrix[i][j]==0)
g->matrix[i][j]=INF;
}
}
return g;
}
//关键路径的最短时间
//关键路径法(Critical Path Method,CPM)
void CPM_road(PGraph g){
int i,j;
int a[MAX]={0},b[MAX]={-10};
int max=0;//最长路径
for( i=0;i<g->vexnum;i++){//列数遍历
for( j=0;j<g->vexnum;j++){//行数遍历
//如果g->matrix[j][i]大于0,说明此顶点有前顶点,由前边的遍历可知,前顶点的最长路径a[j],
//加上g->matrix[j][i]的路径就是当前a[i]的路径
if(g->matrix[j][i]!=INF && g->matrix[j][i]+a[j]>max){
max=g->matrix[j][i]+a[j];
a[i]=max;
}
}
max=0;
}
//显示最长路径
printf("第一个顶点到每一个顶点的最长路径:");
printf(" ");
for(i=0;i<g->vexnum;i++){
printf("V%d ",i+1);
}
printf(" ");
for(i=0;i<g->vexnum;i++){
printf("%d ",a[i]);
}
printf(" ");
printf("最后一个顶点到每个顶点的最长路径:");
for( i=g->vexnum-1;i>=0;i--){ //列数遍历
for( j=g->vexnum-1;j>=0;j--){ //行数遍历
//如果g->matrix[j][i]大于0,说明此顶点有前顶点,由前边的遍历可知,前顶点的最长路径a[j],
//加上g->matrix[j][i]的路径就是当前a[i]的路径
if(g->matrix[i][j]!=INF && g->matrix[i][j]+b[j]>max){
max=g->matrix[i][j]+b[j];
b[i]=max;
}
}
max=0;
}
//显示最长路径
printf(" ");
for(i=0;i<g->vexnum;i++){
printf("V%d ",i+1);
}
printf(" ");
for(i=0;i<g->vexnum;i++){
printf("%d ",b[i]);
}
printf(" ");
printf("关键路径: ");
for(i=0;i<g->vexnum;i++){
if(a[i]==a[g->vexnum-1]-b[i]){
printf("V%c ",g->vexs[i]);
}
}
printf(" ");
}
void print_shortest_path(PGraph g,int* distance,int* path,int* used,int start,int end){
// 输出最短距离并打印最短路径
int i = 0, pre, inverse_path[g->vexnum];
char s1[3],s2[3];
sprintf(s1, "V%d", (start+1));
sprintf(s2, "V%d", (end+1));
printf("从%s顶点到%s顶点的最短距离: %d ", s1, s2, distance[end]);
inverse_path[i] = end;
pre = path[end];
if(pre == -1){
printf("没有通路! ");
}else{
while(pre != start){
inverse_path[++i] = pre;
pre = path[pre];
}
inverse_path[++i] = start;
printf("从%s顶点到%s顶点的最短路径: ", s1, s2);
for(; i > 0; i--){
sprintf(s1, "V%d", (inverse_path[i]+1));
printf("%s -> ", s1);
}
sprintf(s1, "V%d", (inverse_path[i]+1));
printf("%s ", s1);
}
return;
}
void shortest_path(PGraph g,int start, int end){ // 基于Dijkstra算法的最短路径函数
int distance[g->vexnum]; // 用于存放起始点到其余各点的最短距离
int path[g->vexnum]; // 用于存放起始点到其余各点最短路径的前一个顶点
int used[g->vexnum] = { 0 }; // 用于标记该顶点是否已经找到最短路径
int i, j, min_node, min_dis, pass_flag = 0;
for(i = 0; i < g->vexnum; i++){
distance[i] = g->matrix[start][i]; // 初始化距离数组
if(g->matrix[start][i] < INF){
path[i] = start; // 初始化路径数组
}else{
path[i] = -1;
}
}
used[start] = 1;
path[start] = start;
for(i = 0; i < g->vexnum; i++){
min_dis = INF;
for(j = 0; j < g->vexnum; j++){
if(used[j] == 0 && distance[j] < min_dis){
min_node = j;
min_dis = distance[j];
pass_flag++; // 标记是否存在通路
}
}
if(pass_flag != 0){
used[min_node] = 1;
for(j = 0; j < g->vexnum; j++){
if(used[j] == 0){
if(g->matrix[min_node][j] < INF && distance[min_node] + g->matrix[min_node][j] < distance[j]){
distance[j] = distance[min_node] + g->matrix[min_node][j];
path[j] = min_node;
}
}
}
}
}
print_shortest_path(g,distance, path, used, start, end);
return;
}
int main(){
int i,j;
PGraph gp;
char a[]={'1', '2', '3', '4', '5', '6', '7'};
int b[][3]={{'1', '2',3},
{'1', '3',2},
{'1', '4',6},
{'2', '4',2},
{'2', '5',4},
{'3', '4',1},
{'3', '6',3},
{'4', '5',1},
{'5', '7',3},
{'6', '7',4}};
int n=nLENGTH(a);
int e=eLENGTH(b);
gp=create_graph(b,a,n,e);
//打印邻接矩阵
printf("邻接矩阵: ");
for (i = 0; i < gp->vexnum; i++){
for (j = 0; j < gp->vexnum; j++)
printf("%d ", gp->matrix[j][i]);
printf(" ");
}
CPM_road(gp);
printf(" ");
for(i=0;i<gp->vexnum;i++){
for(j=0;j<gp->vexnum;j++){
if(i!=j)
shortest_path(gp,i, j);
}
}
return 0;
}
运行结果
③ 求Dijkstra算法的C语言实现
//Dijkstra算法 C语言实现 2008-08-26 12:07 #include<stdio.h>
#include<stdlib.h> #define INFINITY 1000000000 //最大距离
#define MAX_NODES 1024 //最大节点数
int n,dist[MAX_NODES][MAX_NODES]; //dist[i][j]表示从 i 到 j 的距离 void shortest_path(int s, int t, int path[])
{
struct state
{
int predecessor; //前驱节点
int length; //到起始点的距离
enum {permanent, tentative} label;
}state[MAX_NODES];
int i,k,min;
struct state * p;
for(p=&state[0]; p<&state[n]; p++)
{
p->predecessor = -1;
p->length = INFINITY;
p->label = tentative;
}
state[t].length = 0;
state[t].label = permanent;
k = t; //k 是当前工作节点
do
{
for(i=0; i<n; i++)
{
if(dist[k][i]!=0 && state[i].label==tentative)
{
if(state[k].length+dist[k][i]<state[i].length)
{
state[i].length = state[k].length+dist[k][i];
state[i].predecessor = k;
}
}
}
k=0;
min=INFINITY;
for(i=0; i<n; i++)
{
if(state[i].label==tentative && state[i].length<min)
{
k=i;
min=state[i].length;
}
}
state[k].label = permanent;
}while(k!=s);
i=0;
k=s;
do
{
path[i++] = k;
k = state[k].predecessor;
}while(k>=0);
}
④ 解释一下dijkstra算法这个计算过程的意思 怎么算的
最近也看到这个算法,不过主要是通过C语言介绍的,不太一样,但基本思想差不多。下面只是我个人的看法不一定准确。
Dijkstra算法主要解决指定某点(源点)到其他顶点的最短路径问题。
基本思想:每次找到离源点最近的顶点,然后以该顶点为中心(过渡顶点),最终找到源点到其余顶点的最短路。
t=1:令源点(v_0)的标号为永久标号(0,λ)(右上角加点), 其他为临时(+无穷,λ). 就是说v_0到v_0的距离是0,其他顶点到v_0的距离为+无穷。t=1时,例5.3上面的步骤(2)(3)并不能体现
t=2:第1步v_0(k=0)获得永久标号,记L_j为顶点标号当前的最短距离(比如v_0标号(0,λ)中L_0=0), 边(v_k,v_j)的权w_kj. 步骤(2)最关键,若v_0与v_j之间存在边,则比较L_k+w_kj与L_j, 而L_k+w_kj=L_0+w_0j<L_j=+无穷。
这里只有v_1,v_2与v_0存在边,所以当j=1,2时修改标号, 标号分别为(L_1, v_0)=(1, v_0), (L_2, v_0)=(4, v_0), 其他不变。步骤(3)比较所有临时标号中L_j最小的顶点, 这里L_1=1最小,v_1获得永久标号(右上角加点)。
t=3: 第2步中v_1获得永久标号(k=1), 同第2步一样,通过例5.3上面的步骤(2)(3),得到永久标号。 步骤(2),若v_1与v_j(j=2,3,4,5(除去获得永久标号的顶点))之间存在边,则比较L_1+w_1j与L_j。这里v_1与v_2,v_3,v_,4存在边,
对于v_2, L_1+w_12=1+2=3<L_2=4, 把v_2标号修改为(L_1+w_12, v_1)=(3, v_1);
对于v_3, L_1+w_13=1+7=8<L_3=+无穷, 把v_3标号修改为(L_1+w_13, v_1)=(8, v_1);
对于v_4, L_1+w_14=1+5=6<L_4=+无穷, 把v_4标号修改为(L_1+w_14, v_1)=(6, v_1);
v_5与v_1不存在边,标号不变。步骤(3), 找这些标号L_j最小的顶点,这里v_2标号最小
t=4: k=2, 与v_2存在边的未获得永久标号的顶点只有v_4, 比较L_2+w_24=3+1=4<L_4=6, 把v_4标号修改为(L_2+w_24, v_2)=(4, v_2); 其他不变。步骤(3), L_4=4最小。
t=5: k=4, 同理先找v_4邻接顶点,比较,修改标号,找L_j最小
t=6: 同理
啰嗦的这么多,其实步骤(2)是关键,就是通过比较更新最短路径,右上角标点的就是距离源点最近的顶点,之后每一步就添加一个新的”源点”,再找其他顶点与它的最短距离。
迪杰斯特拉算法(Dijkstra)(网络):
http://ke..com/link?url=gc_mamV4z7tpxwqju6BoqxVOZ_josbPNcGKtLYJ5GJsJT6U28koc_#4
里面有个动图,更形象地说明了该算法的过程。(其中每次标注的一个红色顶点out就和你的这本书中获得永久标号是相似的)
⑤ 用dijkstra算法解决最短路径问题c语言代码实现时怎样将每一个路径的顶点次序依次输出出来
dijkstra算法原理主要就是已知源节点(v)和n个节点间代价函数(有向网络矩阵cost),通过不断将节点加入到一个节点子集S中,使得经过加入S后的各节点的路径代价是最小的,直至S节点包含了所有的n个节点停止。(具体算法阐明网上很多资料)。闲话少说,直接附程序吧~
/*
readme:
first,you need to input the node number, the cost matrix and the source node;
then the program will compute the best path.
finally,the program will output the lowest distance to the destination node, the pre-node and show the best path.
*/
#i nclude<stdio.h>
#i nclude <stdlib.h>
//Dijkstra算法实现函数
void Dijkstra(int n,int v,int dist[],int prev[],int **cost)
{
int i;
int j;
int maxint = 65535;//定义一个最大的数值,作为不相连的两个节点的代价权值
int *s ;//定义具有最短路径的节点子集s
s = (int *)malloc(sizeof(int) * n);
//初始化最小路径代价和前一跳节点值
for (i = 1; i <= n; i++)
{
dist[i] = cost[v][i];
s[i] = 0;
if (dist[i] == maxint)
{
prev[i] = 0;
}
else
{
prev[i] = v;
}
}
dist[v] = 0;
s[v] = 1;//源节点作为最初的s子集
for (i = 1; i < n; i++)
{
int temp = maxint;
int u = v;
//加入具有最小代价的邻居节点到s子集
for (j = 1; j <= n; j++)
{
if ((!s[j]) && (dist[j] < temp))
{
u = j;
temp = dist[j];
}
}
s[u] = 1;
//计算加入新的节点后,更新路径使得其产生代价最短
for (j = 1; j <= n; j++)
{
if ((!s[j]) && (cost[u][j] < maxint))
{
int newdist = dist[u] + cost[u][j];
if (newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}
}
//展示最佳路径函数
void ShowPath(int n,int v,int u,int *dist,int *prev)
{
int j = 0;
int w = u;
int count = 0;
int *way ;
way=(int *)malloc(sizeof(int)*(n+1));
//回溯路径
while (w != v)
{
count++;
way[count] = prev[w];
w = prev[w];
}
//输出路径
printf("the best path is:\n");
for (j = count; j >= 1; j--)
{
printf("%d -> ",way[j]);
}
printf("%d\n",u);
}
//主函数,主要做输入输出工作
void main()
{
int i,j,t;
int n,v,u;
int **cost;//代价矩阵
int *dist;//最短路径代价
int *prev;//前一跳节点空间
printf("please input the node number: ");
scanf("%d",&n);
printf("please input the cost status:\n");
cost=(int **)malloc(sizeof(int)*(n+1));
for (i = 1; i <= n; i++)
{
cost[i]=(int *)malloc(sizeof(int)*(n+1));
}
//输入代价矩阵
for (j = 1; j <= n; j++)
{
for (t = 1; t <= n; t++)
{
scanf("%d",&cost[j][t]);
}
}
dist = (int *)malloc(sizeof(int)*n);
prev = (int *)malloc(sizeof(int)*n);
printf("please input the source node: ");
scanf("%d",&v);
//调用dijkstra算法
Dijkstra(n, v, dist, prev, cost);
printf("*****************************\n");
printf("have confirm the best path\n");
printf("*****************************\n");
for(i = 1; i <= n ; i++)
{
if(i!=v)
{
printf("the distance cost from node %d to node %d is %d\n",v,i,dist[i]);
printf("the pre-node of node %d is node %d \n",i,prev[i]);
ShowPath(n,v,i, dist, prev);
}
}
}