python类型比较
① python的数据类型有哪些
1. 数字类型
Python数字类型主要包括int(整型)、long(长整型)和float(浮点型),但是在Python3中就不再有long类型了。
int(整型)
在32位机器上,整数的位数是32位,取值范围是-231~231-1,即-2147483648~214748364;在64位系统上,整数的位数为64位,取值范围为-263~263-1,即9223372036854775808~9223372036854775807。
long(长整型)
Python长整型没有指定位宽,但是由于机器内存有限,使用长的长整数数值也不可能无限大。
float(浮点型)
浮点型也就是带有小数点的数,其精度和机器有关。
complex(复数)
Python还支持复数,复数由实数部分和虚数部分构成,可以用 a + bj,或者 complex(a,b) 表示, 复数的实部 a 和虚部 b 都是浮点型。
2. 字符串
在Python中,加了引号的字符都被认为是字符串,其声明有三种方式,分别是:单引号、双引号和三引号;Python中的字符串有两种数据类型,分别是str类型和unicode类型,str类型采用的ASCII编码,无法表示中文,unicode类型采用unicode编码,能够表示任意字符,包括中文和其他语言。
3. 布尔型
和其他编程语言一样,Python布尔类型也是用于逻辑运算,有两个值:True(真)和False(假)。
4. 列表
列表是Python中使用最频繁的数据类型,集合中可以放任何数据类型,可对集合进行创建、查找、切片、增加、修改、删除、循环和排序操作。
5. 元组
元组和列表一样,也是一种序列,与列表不同的是,元组是不可修改的,元组用”()”标识,内部元素用逗号隔开。
6. 字典
字典是一种键值对的集合,是除列表以外Python之中最灵活的内置数据结构类型,列表是有序的对象集合,字典是无序的对象集合。
7. 集合
集合是一个无序的、不重复的数据组合,它的主要作用有两个,分别是去重和关系测试。
② Python中内置数据类型list,tuple,dict,set的区别和用法
这篇文章主要给大家介绍了Python中内置数据类型list,tuple,dict,set的区别和用法,都是非常基础的知识,十分的细致全面,有需要的小伙伴可以参考下。
Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。
List
字面意思就是一个集合,在Python中List中罩桥哗的元素用中括号[]来表示,可以这样定义一个List:
L = [12, 'China', 19.998]
可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:
L = []
Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:
>>> print L[0]
12
千万不要越界,否则会报错
>>> print L[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
IndexError: list index out of range
List也可以倒序访问,通过“倒数第x个”这样的下标来表物行示序号,比如-1这个下标就表示倒数第一个元素:
>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998
-4的话显然就越界了
>>> print L[-4]
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <mole>
print L[-4]
IndexError: list index out of range
>>>
List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):
>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>
通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:
>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]
也可以通过下标进行复制替换
>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]
Tuple
Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:
>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')
但是不能重新赋值替换:
>>> t[1] = 'America'
Traceback (most recent call last):
File "<pyshell#21>", line 1, in <mole>
t[1] = 'America'
TypeError: 'tuple' object does not support item assignment
也没有pop和insert、append方法。
可以创建空元素的tuple:
t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):
t = (3.14,)
那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而消盯且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:
>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])
这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。
Dict
Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:
>>> d = {
'Adam': 95,
'Lisa': 85,
'Bart': 59,
'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):
>>> len(d)
4
可以直接通过键值对方式添加dict中的元素:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)
>>> print d['Adam']
95
如果Key不存在,会报错:
>>> print d['Jack']
Traceback (most recent call last):
File "<pyshell#40>", line 1, in <mole>
print d['Jack']
KeyError: 'Jack'
所以访问之前最好先查询下key是否存在:
>>> if 'Adam' in d : print 'exist key'
exist key
或者直接用保险的get方法:
>>> print d.get('Adam')
95
>>> print d.get('Jason')
None
至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:
>>> for key in d : print key, ':', d.get(key)
Lisa : 85
Paul : 75
Adam : 95
Bart : 59
Dict具有一些特点:
查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}
Dict的合并,如何将两个Dict合并为一个,可以用dict函数:
>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
或者
>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
方法2比方法1速度快很多,方法2等同于:
>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
set
set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:
>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。
对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:
>>> print 'A' in s
True
>>> print 'D' in s
False
大小写是敏感的。
也通过for来遍历:
s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
print x[0],':',x[1]
>>>
Lisa : 85
Adam : 95
Bart : 59
通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:
>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])
如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:
>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])
删除set中的元素时,用set的remove()方法:
>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])
如果删除的元素不存在set中,remove()会报错:
>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
KeyError: 4
所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:
months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'
if x1 in months:
print 'x1: ok'
else:
print 'x1: error'
if x2 in months:
print 'x2: ok'
else:
print 'x2: error'
>>>
x1: ok
x2: error
③ python提供了三种基本的数字类型
整数、浮点数
④ python数据类型有哪些
Python基本数据类型一般分为:数字、字符串、列表、元组、字典、集合这六种基本数据类型。
其中数字又包含整型(整型又包括标准整型、长整型(Python2.7及之前版本有))、浮点型、复数类型、布尔型(布尔型就是只有两个值的整型)、这几种数字类型。列表、元组、字符串都是序列。
1、数字
数字类型是不可更改的对象。对变量改变数字值就是生成/创建新的对象。Python支持多种数字类型:
整型(标准整型和长整型(Python2.7及之前的有这种类型))、布尔型、双精度浮点型、十进制浮点型、复数。
2、标准整型
int,标准整型,在大多数32位机器上标准整型取值范围是-2^31到2^31-1,也就是-2147483648~2147483647,如果在64位机器使用64位编译器,那么这个系统的标准整型将是64位。
3、布尔型
bool,从Python2.3开始Python中添加了布尔类型。布尔类型有两种True和False。对于没有__nozero__方法的对象默认是True。
对于值为0的数字、空集(空列表、空元组、空字典等)在Python中的布尔类型中都是False。
>>>bool(1)
True
>>>bool('a')
True
>>>bool(0)
False
>>>bool('')
False
4、浮点型
float,每个浮点型占8个字节(64位),完全遵守IEEE754号规范(52M/11E/1S),其中52个位用于表示底,11个位用于表示指数(可表示的范围大约是±10**308.25),剩下的一个位表示符号。这看上去相当完美,然而,实际精度依赖于机器架构和创建Python解释器的编译器。
浮点型值通常都有一个小数点和一个可选的后缀e(大写或小写,表示科学计数法)。在e和指数之间可以用正(+)或负(-)表示指数的正负(正数的话可以省略符号)。
以上是Python核心编程的对浮点型(双精度浮点型)的说明。经过Python实测浮点型默认长度是24字节如果超出这个范围会自动
5、复数类型
complex,在复数中虚数不能单独存在,它们总是和一个值为0.0的实数部分一起来构成一个复数。复数由实数部分和虚数部分构成。表示虚数的语法:real+imagj。
实数部分和虚数部分都是浮点型。虚数部分必须有后缀j或J。
⑤ python普通整型和长整型的区别是什么
Python普通整型和长整型的区别:
Python的普通整型类型是最通用的数字类型。在大多数32位机器上,普通整型类型的取值范围是-2**32~2**32 - 1。
Python的长整型类型能表达的数值仅仅与你的机器支持的(虚拟)内存大小有关,换句话说,Python能轻松表达很大的整数。
长整型类型是普通整型类型的超集,当程序需要使用比普通整型更大的整型时,可以使用长整型类型,在整型值后面添加L,表示这个为长整型,这两种整型类型正在逐渐统一为一种。
python学习网,免费的在线学习python平台,欢迎关注!
⑥ python列表值是怎么比较大小的
肯定不是相加
但有可能是从左到右依次比较(前面都相等再比较下一个)
话说回来list比较没意义,如果你想要有意义的结果,可以自定义类型,并重写比较的方法
⑦ python语言中有哪些数据类型
python数据类型有很多,这里为大家简单例举几个:
第一种:整数
python可以处理任意大小的整数,当然包含负整数,在python程序中,整数的表示方法和数学上的写法一模一样,比如:1,100,-8080,0,等。
计算机由于使用二进制,所以有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9,a-f表示,比如:0xff00。
第二种:浮点数
浮点数也就是小数,之所以称为浮点数,是因为按照科学计数法表示时,一个浮点数的小数点位置是可变的。浮点数可以用数学写法,比如1.23,3.15,-9.01等。但是对于很大或者很小的浮点数,就必须用科学计数法表示,把10用e替代,1.23x10^9就是1.23e9。
整数和浮点数在计算机内部存储的方法是不同的,整数运算永远是精确的,而浮点数运算则可能会有四舍五入的误差。
第三种:字符串
字符串是以“或”括起来的任意文本,比如'abc','xyz'等。请注意,“或”本身只是一种表示方式,不是字符串的一部分,因此,字符串'abc'只有a,b,c这3个字符。
第四个:布尔值
布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值,要么是True,要么是False,在python中,可以直接用True、False表示布尔值,也可以通过布尔运算计算出来。
布尔值可以用and、or或not运算。
and运算是与运算,只有所有都为True,and运算结果才是True。
or运算是或运算,只要其中有一个为True,or运算结果就是True。
not运算是非运算,它是一个单目运算符,把True变成False,False变成True。
第五个:空值
空值是python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。
此外,python还提供了列表、字典等多种数据类型,还允许创建自定义数据类型。