当前位置:首页 » 编程语言 » python数据挖掘项目

python数据挖掘项目

发布时间: 2023-09-14 04:26:23

python数据挖掘是什么

数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信
息和知识的过程。
python数据挖掘常用模块
numpy模块:用于矩阵运算、随机数的生成等

pandas模块:用于数据的读取、清洗、整理、运算、可视化等

matplotlib模块:专用于数据可视化,当然含有统计类的seaborn模块

statsmodels模块:用于构建统计模型,如线性回归、岭回归、逻辑回归、主成分分析等

scipy模块:专用于统计中的各种假设检验,如卡方检验、相关系数检验、正态性检验、t检验、F检验等

sklearn模块:专用于机器学习,包含了常规的数据挖掘算法,如决策树、森林树、提升树、贝叶斯、K近邻、SVM、GBDT、Kmeans等
数据分析和挖掘推荐的入门方式是?小公司如何利用数据分析和挖掘?
关于数据分析与挖掘的入门方式是先实现代码和Python语法的落地(前期也需要你了解一些统计学知识、数学知识等),这个过程需要
你多阅读相关的数据和查阅社区、论坛。然后你在代码落地的过程中一定会对算法中的参数或结果产生疑问,此时再去查看统计学和数据
挖掘方面的理论知识。这样就形成了问题为导向的学习方法,如果将入门顺序搞反了,可能在硬着头皮研究理论算法的过程中就打退堂鼓
了。

对于小公司来说,你得清楚的知道自己的痛点是什么,这些痛点是否能够体现在数据上,公司内部的交易数据、营销数据、仓储数据等是
否比较齐全。在这些数据的基础上搭建核心KPI作为每日或每周的经营健康度衡量,数据分析侧重于历史的描述,数据挖掘则侧重于未来
的预测。

差异在于对数据的敏感度和对数据的个性化理解。换句话说,就是懂分析的人能够从数据中看出破绽,解决问题,甚至用数据创造价值;
不懂分析的人,做不到这些,更多的是描述数据。
更多技术请关注python视频教程。

⑵ Python和数据挖掘有什么关系

Python是工具
数据挖掘是研究方向
数据挖掘有很多经典算法,这些算法有的有现成Python包,你可以用Python调用这些包处理自己的数据实现数据挖掘。

⑶ Python 数据分析与数据挖掘是啥

python数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。数据挖掘不是简单的认为推测就可以,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。

这里可以使用CDA一站式数据分析平台,融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。其中数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。帮助企业发现潜在的信息,挖掘数据的潜在价值。

如果你对于Python学数据挖掘感兴趣的话,推荐CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。真正理解商业思维,项目思维,能够遇到问题解决问题;要求学生在使用算法解决微观根因分析、预测分析的问题上,根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。点击预约免费试听课。

⑷ python 数据挖掘需要用哪些库和工具

python 数据挖掘常用的库太多了!主要分为以下几大类:
第一数据获取:request,BeautifulSoup
第二基本数学库:numpy
第三 数据库出路 pymongo
第四 图形可视化 matplotlib
第五 树分析基本的库 pandas

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。

想要了解更多有关python 数据挖掘的信息,可以了解一下CDA数据分析师的课程。CDA数据分析师证书的含金量是很高的,简单从两个方面分析一下:首先是企业对于CDA的认可,经管之家CDA LEVEL Ⅲ数据科学家认证证书,属于行业顶尖的人才认证,已获得IBM大数据大学,中国电信,苏宁,德勤,猎聘,CDMS等企业的认可。CDA证书逐渐获得各企业用人单位认可与引进,如中国电信、中国移动、德勤,苏宁,中国银行,重庆统计局等。点击预约免费试听课。

⑸ python数据挖掘工具包有什么优缺点

【导读】python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy,
Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM,
逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。

优点:

1、文档齐全:官方文档齐全,更新及时。

2、接口易用:针对所有算法提供了一致的接口调用规则,不管是KNN、K-Means还是PCA.

3、算法全面:涵盖主流机器学习任务的算法,包括回归算法、分类算法、聚类分析、数据降维处理等。

缺点:

缺点是scikit-learn不支持分布式计算,不适合用来处理超大型数据。

Pandas是一个强大的时间序列数据处理工具包,Pandas是基于Numpy构建的,比Numpy的使用更简单。最初开发的目的是为了分析财经数据,现在已经广泛应用在Python数据分析领域中。Pandas,最基础的数据结构是Series,用它来表达一行数据,可以理解为一维的数组。另一个关键的数据结构为DataFrame,它表示的是二维数组

Pandas是基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制。有一本书《Python
for Data Analysis》,作者是Pandas的主力开发,依次介绍了iPython, NumPy,
Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,相当不错。

Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。

关于python数据挖掘工具包的优缺点,就给大家介绍到这里了,scikit-learn提供了一致的调用接口。它基于Numpy和scipy等Python数值计算库,提供了高效的算法实现,所以想要学习python,以上的内容得学会。

⑹ Python数据挖掘从哪些

一. 基于Python的数据挖掘 基本架构

1. matplotlib, 图形化

2. pandas,数据挖掘的关键, 提供各种挖掘分析的算法

3. numpy, 提供基本的统计
scipy, 提供各种数学公式

4. python common lib,python基本框架

二. 环境搭建
1. 安装python

2. 安装pip
pandas依赖的pip版本,最低是8.0.0。如果pip是8以下的版本,如7.2.1,需要升级pip.
命令是“python -m pip install -U pip”,这是windows版本。
Linux是”pip install -U pip“

通过命令“pip --version”, 可以查看pip版本号

3. 安装pandas
命令“pip install pandas", 这是windows版本。

Linux平台可用
sudo apt-get install python-pandas

4. 安装matplotlib
pip install matplotlib

三. 数据类型
pypython common type
string list tuple dict set
6钟学列
list, tuple, string, unicode string, buffer object, xrange

pandas type
ndarray, series dateFrame

ndarray, 数组类型,新增原因:
list, tuple是基于指针+对象设计的。即list,tuple存储的是void*指针,指针指向具体对象的数据。
因为是void*指针,所以二者可以存储各种数据类型,即数据类型可以不统一。
虽然存储丰富,但如果数据量过大时,即处理大数据时,有弊端。
1. 存储空间大,浪费内存。因为存两部分,指针+数据
2. 读取慢,通过index,找到指针;基于指针,找到数据
所以在大数据处理时,新增ndarray,数字类型,类似C++ 数组。存储相同,读取、修改快捷。
别名:array, 有利于节省内存、提高CPU的计算时间,有丰富的处理函数

series,变长字典,
类似一维数组的对象;有数据和索引组成
新增原因:
dict是无序的,它的key和value存在映射关系。但key和value之间是不独立的,存储在一起。
如果需要对一项进行操作,会影响到另外一项。所以有了series, series的key和value是独立的,独立存储。
series的key是定长有序的。通过series.key获取整个索引, 通过series.values获取所有values.
series的key,可以通过series.index.name,设置唯一的名称。
series整体也可以设置唯一名称,通过series.name

DataFrame:
1. 一个表格型的数据结构
2. 含有一组有序的列(类似于index)
3. 可以认为是,共享一个index的Series集合

data1={'name':['java', 'c', 'python'], 'year': [2,2,3]}
frame = pd.DataFrame(data1)

------------------------------------------------
四. 基本的数据分析流程:
1. 数据的获取

2. 数据准备--规格化,建立各种索引index

3. 数据的显示、描述,用于调试
如df.index, df.values, df.head(n), df.tail(n) df.describe

4. 数据的选择
index获取, 切片获取, 行、列获取, 矩形区域获取

index获取,df.row1 或者 df['row1']
行列,df.loc[行list, 列list], 如df.loc[0:1,['co1','col2'] ]
通过二位索引,取二维左上角,df.iloc[0,0],也可以列表 df.iloc[0:2,0:2],取前2行。

5. 简单的统计与处理
统计平均值、最大值等

6. Grouping 分组
df.groupby(df.row1)

7. Merge合并
append追加,
contact连接, 包含append功能,也可以两个不同的二维数据结构合并
join连接, sql连接,基于相同字段连接,如 sql的where, a.row1 = b.row1

------------------------------------------------
五. 高级的数据处理与可视化:
1. 聚类分析
聚类是数据挖掘描述性任务和预测性任务的一个重要组成部分,它以相似性为基础,
把相似的对象通过静态分类,分成不同的组别和子集。
在python中,有很多第三方库提供了聚类算法。

聚类算法有很多, 其中K-均值算法,因为其简单、快捷的特点,被广泛使用。
基本原理是,
1. 查找某数据集的中心,
2. 使用均方差,计算距离。使得每一个数据点都收敛在一个组内;各个组是完全隔离的

案例:
>>> from pylab import *
>>> from scipy.cluster.vq import *
>>>
>>> list1=[88,64,96,85]
>>> list2=[92,99,95,94]
>>> list3=[91,87,99,95]
>>> list4 = [78,99,97,81]
>>> list5=[88,78,98,84]
>>> list6=[100,95,100,92]
>>> tempdate = (list1, list2, list3, list4, list5, list6)
>>>
>>> tempdate
([88, 64, 96, 85], [92, 99, 95, 94], [91, 87, 99, 95], [78, 99, 97, 81], [88, 78
, 98, 84], [100, 95, 100, 92])
>>> date = vstack(tempdate)
>>>
>>> date
array([[ 88, 64, 96, 85],
[ 92, 99, 95, 94],
[ 91, 87, 99, 95],
[ 78, 99, 97, 81],
[ 88, 78, 98, 84],
[100, 95, 100, 92]])

>>> centroids,abc=kmeans(date,2) #查找聚类中心,第二个参数是设置分N类,如5类,则为5

>>> centroids # 基于每列查找的中心点,可能是平均值
array([[88, 71, 97, 84],
[90, 95, 97, 90]])
>>>
>>> result,cde=vq(date,centroids) #对数据集,基于聚类中心进行分类
>>> result
array([0, 1, 1, 1, 0, 1])

2. 绘图基础
python描绘库,包含两部分,
绘图api, matplotlib提供各种描绘接口。
集成库,pylab(包含numpy和matplotlib中的常用方法),描绘更快捷、方便。

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0,10)

plt.plot(t, t+2)
plt.plot(t,t, 'o', t,t+2, t,t**2, 'o') #(x,y)一组,默认是折线;‘o'是散点,
plt.bar(t,t**2) # 柱状图
plt.show()

--------------------
import pylab as pl
t = np.arange(0,10)
plt.plot(t, t+2)
plt.show()

3. matplotlib图像属性控制
色彩、样式
名称: 图、横、纵轴,
plt.title('philip\'s python plot')
plt.xlabel('date')
plt.ylabel('value')
其他: pl.figure(figsize=(8,6),dpi=100)
pl.plot(x,y, color='red', linewidth=3, lable='line1')
pl.legend(loc='upper left')

子图
pl.subplot(211) # 整体图片,可以分为二维部分;
#第一个是图的行,第二个是列;第三个是index, 从左上开始0遍历 当前行,再下一行。
#如果是2位数,如11,需要‘,’
axes(left, bottom, width, height) # 参数取值范围是(0,1), left,是到左边的距离,bottom是到下面的距离

4. pandas作图
Series、DataFrame支持直接描绘,封装了调用matplotlib的接口,如
series.close.plot()
df.close.plot() #具体参数类似matplotlib普通接口

属性控制
类似matplotlib普通接口,修改各种图片的类型,柱形图、折线等

--------common-----------------
list, tuple, dict

--------numpy-----------------
ndarray, Series, DataFrame

⑺ python数据挖掘做出来是一个系统吗

是的。

一:什么是数据挖掘
__数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。

__数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。
二:数据挖掘的基本任务
__数据挖掘的基本任务就是主要要解决的问题。数据挖掘的基本任务包括分类与预测、聚类分析、关联规则、奇异值检测和智能推荐等。通过完成这些任务,发现数据的潜在价值,指导商业和科研决策,给科学研究带来指导以及给商业带来新价值。下面就分别来认识一下常见的基本任务。

1.分类与预测

__是一种用标号的进行学习的方式,这种编号是类编号。这种类标号若是离散的,属于分类问题;若是连续的,属于预测问题,或者称为回归问题。从广义上来说,不管是分类,还是回归,都可以看做是一种预测,差异就是预测的结果是离散的还是连续的。

2.聚类分析

__就是“物以类聚,人以群分”在原始数据集中的运用,其目的是把原始数据聚成几类,从而使得类内相似度高,类间差异性大。

3.关联规则

__数据挖掘可以用来发现规则,关联规则属于一种非常重要的规则,即通过数据挖掘方法,发现事务数据背后所隐含的某一种或者多种关联,从而利用这些关联来指导商业决策和行为。

4.奇异值检测

__根据一定准则识别或者检测出数据集中的异常值,所谓异常值就是和数据集中的绝大多数据表现不一致。

5.智能推荐

__这是数据挖掘一个很活跃的研究和应用领域,在各大电商网站中都会有各种形式推荐,比方说同类用户所购买的产品,与你所购买产品相关联的产品等。
三:数据挖掘流程
__我们由上面的章节知道了数据挖掘的定义和基本任务,本节我们来学习一下数据挖掘的流程,来讲述数据挖掘是如何进行的。

1.定义挖掘目标

__该步骤是分析要挖掘的目标,定义问题的范围,可以划分为下面的目标:

__(1)针对具体业务的数据挖掘应用需求,首先要分析是哪方面的问题。

__(2)分析完问题后,该问题如果解决后可以实现什么样的效果,达到怎样的目标。

__(3)详细地列出用户对于该问题的所有需求。

__(4)挖掘可以用到那些数据集。究竟怎样的挖掘方向比较合理。

__(5)综合上面的要求,制定挖掘计划。
2.数据取样

__在明确了数据挖掘的目标后,接下来就需要在业务数据集中抽取和挖掘目标相关的数据样本子集。这就是数据取样操作。那么数据取样时需要注意哪些方面呢?

__第一是抽取的数据要和挖掘目标紧密相关,并且能够很好地说明用户的需求。

__第二是要可靠,质量要有所保证,从大范围数据到小范围数据,都不要忘记检查数据的质量,这是因为如果原始的数据有误,在之后的过程中,可能难以探索规律,即使探索出规律,也有可能是错误的。

__第三个方面是要有效,要注意数据的完整,但是有时候可能要抽取的数据量比较大,这个时候也许有的数据是根本没有用的,可以通过筛选进行处理。通过对数据的精选,不仅能减少数据处理量,节省系统资源,还能够让我们要寻找的数据可以更加地显现出来。
__而衡量数据取样质量的标准如下:

__(1)确定取样的数据集后,要保证数据资料完整无缺,各项数据指标完整。

__(2)数据集要满足可靠性和有效性。

__(3)每一项的数据都准确无误,反映的都是正常状态下的水平。

__(4)数据集合部分能显现出规律性。

__(5)数据集合要能满足用户的需求。
数据取样的方法有多种多样的,常见的方式如下:

__(1)随机取样:就是按照随机的方法进行取样,数据集中的每一个元素被抽取的概率是一样的。可以按照每一个特定的百分比进行取样,比如按照5%,10%,20%等每个百分比内随机抽取n个数据。

__(2)等距取样:和随机取样有些类似,但是不同的是等距取样是按照一定百分比的比例进行等距取样,比如有100个数据,按照10%的比例进行等距取样就是抽取10,20,30,40,50,60,70,80,90,100这10个数据。

__(3)分层取样:在这种抽样的操作中,首先将样本总体分为若干子集。在每个层次中的值都有相同的被选用的概率,但是可以对每一层设置不同的概率,分别代表不同层次的水平。是为了未来更好地拟合层次数据,综合后得到更好的精度。比如100个数据分为5层,在1-20,20-30,30-40,40-50等每一层抽取的个数不同,分别代表每一层。

__(4)分类取样:分类抽样是依据某种属性的取值来选择数据子集,按照某种类别(规则)进行选择,比如按照客户名称,同学姓名,地址区域,企业类别进行分类。

__(5)从起始位置取样:就是从输入数据集的起始处开始抽样,抽取一定的百分比数据。

__(6)从结束位置取样:就是从输入数据集的最后处反向抽样,抽取一定的百分比数据。

⑻ python数据挖掘难不难

python数据挖掘,指用python对数据进行处理,从大型数据库的分析中,发现预测信息的过程。
什么是数据挖掘?

数据挖掘(英文全称Data Mining,简称DM),指从大量的数据中挖掘出未知且有价值的信息和只知识的过程。

对于数据科学家来说,数据挖掘可能是一项模糊而艰巨的任务 - 它需要多种技能和许多数据挖掘技术知识来获取原始数据并成功获取数据。您需要了解统计学的基础,以及可以帮助您大规模进行数据挖掘的不同编程语言。

python数据挖掘是什么?

数据挖掘建模的工具有很多种,我们这里重点介绍python数据挖掘,python是美国Mathworks公司开发的应用软件,创始人为荷兰人吉多·范罗苏姆,具备强大的科学及工程计算能力,它具有以矩阵计算为基础的强大数学计算能力和分析功能,而且还具有丰富的可视化图形表现功能和方便的程序设计能力。python并不提供一个专门的数据挖掘环境,但它提供非常多的相关算法的实现函数,是学习和开发数据挖掘算法的很好选择。

只要有方法,正确且循序渐进的学习,python数据挖掘也并没有想象中那么难!

热点内容
滑板鞋脚本视频 发布:2025-02-02 09:48:54 浏览:432
群晖怎么玩安卓模拟器 发布:2025-02-02 09:45:23 浏览:557
三星安卓12彩蛋怎么玩 发布:2025-02-02 09:44:39 浏览:743
电脑显示连接服务器错误 发布:2025-02-02 09:24:10 浏览:537
瑞芯微开发板编译 发布:2025-02-02 09:22:54 浏览:146
linux虚拟机用gcc编译时显示错误 发布:2025-02-02 09:14:01 浏览:232
java驼峰 发布:2025-02-02 09:13:26 浏览:651
魔兽脚本怎么用 发布:2025-02-02 09:10:28 浏览:532
linuxadobe 发布:2025-02-02 09:09:43 浏览:212
sql2000数据库连接 发布:2025-02-02 09:09:43 浏览:726