当前位置:首页 » 编程语言 » python多线程传参

python多线程传参

发布时间: 2023-09-07 13:18:23

python 已经启动的线程 怎么往里面传参数

把参数放到Queue里,线程从Queue里获得参数,Queue是线程安全的

⑵ python 像这样定义多线程的类在调用时怎么把调用父类的参数传递给子函数

你已经实现了啊。在__init__初始化参数里,将参数传递进去。

另外因为线程工作在主程序同一个空间里,所以可以用全局变量传递。比如定义一个global v,然后在主程序里设置好。
再在线程里用global v来引用。

如果在线程运行当中,动态的改参数。可以象是这里的thread_stop设置。由主进程与从进程单对单的传递信号。

另外还可以通过队列。这个好处是有一个锁,可以全局使用。

此外你还可以引入一个消息管理器。各个线程与主进程直接通过消息传递变量。

进程之间也可以通过共享内存来实现RPC通信,就是交换数据。

线程处理完的数据,如果主程序想处理。可以这样。让线程通过全局变量,通过队列传回来。

不过主进程通常还有一个任务,就是监督线程的完成退处,并管理线程中止信号。

比如你这个程序少了一个
thread.join() 这里的join可以加一个timeout,当超时时,主进程就可以脱身出来,做一些其它的事情,比如处理返回数值。 如果线程通过一个数组变量将状态传回主进程。这样轮洵子线程状态会比join的效率更高。

你这个程序里用文件传递也不是不可以。这是一个很好思路。当你传递变量困难时,可以用文件。或者是数据库

⑶ python多线程thread.start_new_thread传参的问题

因为thread.start_new_thread(ssh_cmd,(3,))开的线程会和主线程一起结束,所以等不到执行print number 程序就结束了

⑷ Python编程面试常见问题有哪些

Python编程面试题目一:python下多线程的限制以及多进程中传递参数的方式,以及区别


(1)python下多线程的限制以及多进程中传递参数的方式


python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是“并行”。


多进程间共享数据,可以使用 multiprocessing.Value 和 multiprocessing.Array


(2)python多线程与多进程的区别


在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。


多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。



Python编程面试题目二:lambada函数


lambda 函数是一个可以接收任意多个参数(包括可选参数)并且返回单个表达式值的函数。 lambda 函数不能包含命令,它们所包含的表达式不能超过一个。不要试图向lambda 函数中塞入太多的东西;如果你需要更复杂的东西,应该定义一个普通函数,然后想让它多长就多长。


更多关于Python编程的技巧,干货,资讯等内容,小编会持续更新。

⑸ python3 创建线程时不用args传参,执行线程时为什么不是同时执行

在Python多线程下,每个线程的执行方式:
1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL

可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。

在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过
sys.setcheckinterval 来调整),进行释放。

而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。

那么是不是python的多线程就完全没用了呢?
在这里我们进行分类讨论:
1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。

2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。

而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

请注意:多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低

回到最开始的问题:经常我们会听到老手说:“python下想要充分利用多核CPU,就用多进程”,原因是什么呢?

原因是:每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

所以在这里说结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率

⑹ python threadpool有多个参数怎么提交

仔细的研究了一下,发现函数调用时

result = request.callable(*request.args, **request.kwds)

第一个解包list,第二个解包dict,所以可以这样:

#----------------------------------------------------------------------
def hello(m, n, o):
""""""
print "m = %s, n = %s, o = %s"%(m, n, o)

if __name__ == '__main__':

# 方法1
lst_vars_1 = ['1', '2', '3']
lst_vars_2 = ['4', '5', '6']
func_var = [(lst_vars_1, None), (lst_vars_2, None)]
# 方法2
dict_vars_1 = {'m':'1', 'n':'2', 'o':'3'}
dict_vars_2 = {'m':'4', 'n':'5', 'o':'6'}
func_var = [(None, dict_vars_1), (None, dict_vars_2)]

pool = threadpool.ThreadPool(2)
requests = threadpool.makeRequests(hello, func_var)
[pool.putRequest(req) for req in requests]
pool.wait()

⑺ Python多线程的一些问题

python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补,为了不浪费你和时间,所以我们直接学习threading 就可以了。
继续对上面的例子进行改造,引入threadring来同时播放音乐和视频:
#coding=utf-8import threadingfrom time import ctime,sleepdef music(func): for i in range(2): print "I was listening to %s. %s" %(func,ctime())
sleep(1)def move(func): for i in range(2): print "I was at the %s! %s" %(func,ctime())
sleep(5)

threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))
threads.append(t1)
t2 = threading.Thread(target=move,args=(u'阿凡达',))
threads.append(t2)if __name__ == '__main__': for t in threads:
t.setDaemon(True)
t.start() print "all over %s" %ctime()

import threading
首先导入threading 模块,这是使用多线程的前提。

threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))
threads.append(t1)
创建了threads数组,创建线程t1,使用threading.Thread()方法,在这个方法中调用music方法target=music,args方法对music进行传参。 把创建好的线程t1装到threads数组中。
接着以同样的方式创建线程t2,并把t2也装到threads数组。

for t in threads:
t.setDaemon(True)
t.start()
最后通过for循环遍历数组。(数组被装载了t1和t2两个线程)

setDaemon()
setDaemon(True)将线程声明为守护线程,必须在start() 方法调用之前设置,如果不设置为守护线程程序会被无限挂起。子线程启动后,父线程也继续执行下去,当父线程执行完最后一条语句print "all over %s" %ctime()后,没有等待子线程,直接就退出了,同时子线程也一同结束。

start()
开始线程活动。

运行结果:
>>> ========================= RESTART ================================
>>> I was listening to 爱情买卖. Thu Apr 17 12:51:45 2014 I was at the 阿凡达! Thu Apr 17 12:51:45 2014 all over Thu Apr 17 12:51:45 2014

从执行结果来看,子线程(muisc 、move )和主线程(print "all over %s" %ctime())都是同一时间启动,但由于主线程执行完结束,所以导致子线程也终止。

继续调整程序:
...if __name__ == '__main__': for t in threads:
t.setDaemon(True)
t.start()

t.join() print "all over %s" %ctime()

我们只对上面的程序加了个join()方法,用于等待线程终止。join()的作用是,在子线程完成运行之前,这个子线程的父线程将一直被阻塞。
注意: join()方法的位置是在for循环外的,也就是说必须等待for循环里的两个进程都结束后,才去执行主进程。
运行结果:
>>> ========================= RESTART ================================
>>> I was listening to 爱情买卖. Thu Apr 17 13:04:11 2014 I was at the 阿凡达! Thu Apr 17 13:04:11 2014I was listening to 爱情买卖. Thu Apr 17 13:04:12 2014I was at the 阿凡达! Thu Apr 17 13:04:16 2014all over Thu Apr 17 13:04:21 2014

从执行结果可看到,music 和move 是同时启动的。
开始时间4分11秒,直到调用主进程为4分22秒,总耗时为10秒。从单线程时减少了2秒,我们可以把music的sleep()的时间调整为4秒。
...def music(func): for i in range(2): print "I was listening to %s. %s" %(func,ctime())
sleep(4)
...

子线程启动11分27秒,主线程运行11分37秒。
虽然music每首歌曲从1秒延长到了4 ,但通多程线的方式运行脚本,总的时间没变化。

热点内容
滑板鞋脚本视频 发布:2025-02-02 09:48:54 浏览:432
群晖怎么玩安卓模拟器 发布:2025-02-02 09:45:23 浏览:557
三星安卓12彩蛋怎么玩 发布:2025-02-02 09:44:39 浏览:743
电脑显示连接服务器错误 发布:2025-02-02 09:24:10 浏览:537
瑞芯微开发板编译 发布:2025-02-02 09:22:54 浏览:146
linux虚拟机用gcc编译时显示错误 发布:2025-02-02 09:14:01 浏览:237
java驼峰 发布:2025-02-02 09:13:26 浏览:652
魔兽脚本怎么用 发布:2025-02-02 09:10:28 浏览:538
linuxadobe 发布:2025-02-02 09:09:43 浏览:212
sql2000数据库连接 发布:2025-02-02 09:09:43 浏览:726