python数据库并发
⑴ python用例并发怎么解决
python-selenium并发执行测试用例(方法一 各模块每一条并发执行)
总执行代码:
# coding=utf-8
import unittest,os,time
import HTMLTestRunner
import threading
import sys
sys.path.append('C:/Users/Dell/Desktop/CARE/program')#使用编辑器,要指定当前目录,不然无法执行第20行代码
def creatsuite():
casedir = []
list = os.listdir(os.path.dirname(os.getcwd()))#获取当前路径的上一级目录的所有文件夹,这里可以改成绝对路径(要搜索的文件路径)
for xx in list:
if "" in xx:
casedir.append(xx)
suite =[]
for n in casedir:
testunit = unittest.TestSuite()
unittest.defaultTestLoader._top_level_dir = None
#(unittest.defaultTestLoader(): defaultTestLoader()类,通过该类下面的discover()方法可自动更具测试目录start_dir匹配查找测试用例文件(test*.py),
并将查找到的测试用例组装到测试套件,因此可以直接通过run()方法执行discover)
discover = unittest.defaultTestLoader.discover(str(n),pattern='tet_*.py',top_level_dir=None)
for test_suite in discover:
for test_case in test_suite:
testunit.addTests(test_case)
suite.append(testunit)
return suite, casedir
def runcase(suite,casedir):
lastPath = os.path.dirname(os.getcwd())#获取当前路径的上一级
resultDir = lastPath+"\\run\\report\\" #报告存放路径
now = time.strftime("%Y-%m-%d %H.%M.%S",time.localtime())
filename = resultDir + now +" result.html"
fp = file(filename, 'wb')
proclist=[]
s=0
for i in suite:
runner = HTMLTestRunner.HTMLTestRunner(stream=fp,title=str(casedir[s])+u'测试报告',description=u'用例执行情况:')
proc = threading.Thread(target=runner.run,args=(i,))
proclist.append(proc)
s=s+1
for proc in proclist:
proc.start()
for proc in proclist:
proc.join()
fp.close()
if __name__ == "__main__":
runtmp=creatsuite()
runcase(runtmp[0],runtmp[1])
⑵ python并发编程-Gevent包介绍
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或中坦举异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。信雀
遇到IO阻塞时会自动切换任务
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前
我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假卖碧线程
通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)
服务端
客户端
多线程并发多个客户端
⑶ python stackless 怎么多线程并发
1 介绍
1.1 为什么要使用Stackless
摘自stackless网站。
Note
Stackless Python 是Python编程语言的一个增强版本,它使程序员从基于线程的编程方式中获得好处,并避免传统线程所带来的性能与复杂度问题。Stackless为 Python带来的微线程扩展,是一种低开销、轻量级的便利工具,如果使用得当,可以获益如下:
改进程序结构
增进代码可读性
提高编程人员生产力
- def familyTacoNight():
- husband.eat(dinner)
- wife.eat(dinner)
- son.eat(dinner)
- daughter.eat(dinner)
- Python 2.4.3 Stackless 3.1b3 060504 (#69, May 3 2006, 19:20:41) [MSC v.1310 32
- bit (Intel)] on win32
- Type "help", "right", "credits" or "license" for more information.
- >>> import stackless
- >>>
- >>> def print_x(x):
- ... print x
- ...
- >>> stackless.tasklet(print_x)('one')
- <stackless.tasklet object at 0x00A45870>
- >>> stackless.tasklet(print_x)('two')
- <stackless.tasklet object at 0x00A45A30>
- >>> stackless.tasklet(print_x)('three')
- <stackless.tasklet object at 0x00A45AB0>
- >>>
- >>> stackless.run()
- one
- two
- three
- >>>
- Python 2.4.3 Stackless 3.1b3 060504 (#69, May 3 2006, 19:20:41) [MSC v.1310 32
- bit (Intel)] on win32
- Type "help", "right", "credits" or "license" for more information.
- >>> import stackless
- >>>
- >>> def print_three_times(x):
- ... print "1:", x
- ... stackless.schele()
- ... print "2:", x
- ... stackless.schele()
- ... print "3:", x
- ... stackless.schele()
- ...
- >>>
- >>> stackless.tasklet(print_three_times)('first')
- <stackless.tasklet object at 0x00A45870>
- >>> stackless.tasklet(print_three_times)('second')
- <stackless.tasklet object at 0x00A45A30>
- >>> stackless.tasklet(print_three_times)('third')
- <stackless.tasklet object at 0x00A45AB0>
- >>>
- >>> stackless.run()
- 1: first
- 1: second
- 1: third
- 2: first
- 2: second
- 2: third
- 3: first
- 3: second
- 3: third
- >>>
能够在微进程之间交换信息。
能够控制运行的流程。
- C:>c:python24python
- Python 2.4.3 Stackless 3.1b3 060504 (#69, May 3 2006, 19:20:41) [MSC v.1310 32
- bit (Intel)] on win32
- Type "help", "right", "credits" or "license" for more information.
- >>> import stackless
- >>>
- >>> channel = stackless.channel()
- >>>
- >>> def receiving_tasklet():
- ... print "Recieving tasklet started"
- ... print channel.receive()
- ... print "Receiving tasklet finished"
- ...
- >>> def sending_tasklet():
- ... print "Sending tasklet started"
- ... channel.send("send from sending_tasklet")
- ... print "sending tasklet finished"
- ...
- >>> def another_tasklet():
- ... print "Just another tasklet in the scheler"
- ...
- >>> stackless.tasklet(receiving_tasklet)()
- <stackless.tasklet object at 0x00A45B30>
- >>> stackless.tasklet(sending_tasklet)()
- <stackless.tasklet object at 0x00A45B70>
- >>> stackless.tasklet(another_tasklet)()
- <stackless.tasklet object at 0x00A45BF0>
- >>>
- >>> stackless.run()
- Recieving tasklet started
- Sending tasklet started
- send from sending_tasklet
- Receiving tasklet finished
- Just another tasklet in the scheler
- sending tasklet finished
- >>>
- >>> stackless.tasklet(sending_tasklet)()
- <stackless.tasklet object at 0x00A45B70>
- >>> stackless.tasklet(another_tasklet)()
- <stackless.tasklet object at 0x00A45BF0>
- >>>
- >>> stackless.run()
- Sending tasklet started
- Just another tasklet in the scheler
- >>>
- >>> stackless.tasklet(another_tasklet)()
- <stackless.tasklet object at 0x00A45B30>
- >>> stackless.run()
- Just another tasklet in the scheler
- >>>
- >>> #Finally adding the receiving tasklet
- ...
- >>> stackless.tasklet(receiving_tasklet)()
- <stackless.tasklet object at 0x00A45BF0>
- >>>
- >>> stackless.run()
- Recieving tasklet started
- send from sending_tasklet
- Receiving tasklet finished
- sending tasklet finished
- def ping():
- print "PING"
- pong()
- def pong():
- print "PONG"
- ping()
- ping()
- #
- # pingpong_stackless.py
- #
- import stackless
- ping_channel = stackless.channel()
- pong_channel = stackless.channel()
- def ping():
- while ping_channel.receive(): #在此阻塞
- print "PING"
- pong_channel.send("from ping")
- def pong():
- while pong_channel.receive():
- print "PONG"
- ping_channel.send("from pong")
- stackless.tasklet(ping)()
- stackless.tasklet(pong)()
- # 我们需要发送一个消息来初始化这个游戏的状态
- # 否则,两个微进程都会阻塞
- stackless.tasklet(ping_channel.send)('startup')
- stackless.run()
- import thread
- import random
- import sys
- import Queue
- class hackysacker:
- counter = 0
- def __init__(self,name,circle):
- self.name = name
- self.circle = circle
- circle.append(self)
- self.messageQueue = Queue.Queue()
- thread.start_new_thread(self.messageLoop,())
- def incrementCounter(self):
- hackysacker.counter += 1
- if hackysacker.counter >= turns:
- while self.circle:
- hs = self.circle.pop()
- if hs is not self:
- hs.messageQueue.put('exit')
- sys.exit()
- def messageLoop(self):
- while 1:
- message = self.messageQueue.get()
- if message == "exit":
- debugPrint("%s is going home" % self.name)
- sys.exit()
- debugPrint("%s got hackeysack from %s" % (self.name, message.name))
- kickTo = self.circle[random.randint(0,len(self.circle)-1)]
- debugPrint("%s kicking hackeysack to %s" % (self.name, kickTo.name))
- self.incrementCounter()
- kickTo.messageQueue.put(self)
- def debugPrint(x):
- if debug:
- print x
- debug=1
- hackysackers=5
- turns = 5
以上是Stackless Python很简明的释义,但其对我们意义何在?——就在于Stackless提供的并发建模工具,比目前其它大多数传统编程语言所提供的,都更加易用: 不仅是Python自身,也包括java、C++,以及其它。尽管还有其他一些语言提供并发特性,可它们要么是主要用于学术研究的(如 Mozart/Oz),要么是罕为使用、或用于特殊目的的专业语言(如Erlang)。而使用stackless,你将会在Python本身的所有优势之 上,在一个(但愿)你已经很熟悉的环境中,再获得并发的特性。
这自然引出了个问题:为什么要并发?
1.1.1 现实世界就是并发的
现实世界就是“并发”的,它是由一群事物(或“演员”)所组成,而这些事物以一种对彼此所知有限的、松散耦合的方式相互作用。传说中面向对象编程有 一个好处,就是对象能够对现实的世界进行模拟。这在一定程度上是正确的,面向对象编程很好地模拟了对象个体,但对于这些对象个体之间的交互,却无法以一种 理想的方式来表现。例如,如下代码实例,有什么问题?
第一印象,没问题。但是,上例中存在一个微妙的安排:所有事件是次序发生的,即:直到丈夫吃完饭,妻子才开始吃;儿子则一直等到母亲吃完才吃;而女 儿则是最后一个。在现实世界中,哪怕是丈夫还堵车在路上,妻子、儿子和女儿仍然可以该吃就吃,而要在上例中的话,他们只能饿死了——甚至更糟:永远没有人 会知道这件事,因为他们永远不会有机会抛出一个异常来通知这个世界!
1.1.2 并发可能是(仅仅可能是)下一个重要的编程范式
我个人相信,并发将是软件世界里的下一个重要范式。随着程序变得更加复杂和耗费资源,我们已经不能指望摩尔定律来每年给我们提供更快的CPU了,当 前,日常使用的个人计算机的性能提升来自于多核与多CPU机。一旦单个CPU的性能达到极限,软件开发者们将不得不转向分布式模型,靠多台计算机的互相协 作来建立强大的应用(想想GooglePlex)。为了取得多核机和分布式编程的优势,并发将很快成为做事情的方式的事实标准。
1.2 安装stackless
安装Stackless的细节可以在其网站上找到。现在Linux用户可以通过SubVersion取得源代码并编译;而对于Windows用户, 则有一个.zip文件供使用,需要将其解压到现有的Python安装目录中。接下来,本教程假设Stackless Python已经安装好了,可以工作,并且假设你对Python语言本身有基本的了解。
2 stackless起步
本章简要介绍了stackless的基本概念,后面章节将基于这些基础,来展示更加实用的功能。
2.1 微进程(tasklet)
微进程是stackless的基本构成单元,你可以通过提供任一个Python可调用对象(通常为函数或类的方法)来建立它,这将建立一个微进程并将其添加到调度器。这是一个快速演示:
注意,微进程将排起队来,并不运行,直到调用stackless.run()。
2.2 调度器(scheler)
调度器控制各个微进程运行的顺序。如果刚刚建立了一组微进程,它们将按照建立的顺序来执行。在现实中,一般会建立一组可以再次被调度的微进程,好让每个都有轮次机会。一个快速演示:
注意:当调用stackless.schele()的时候,当前活动微进程将暂停执行,并将自身重新插入到调度器队列的末尾,好让下一个微进程被执行。一旦在它前面的所有其他微进程都运行过了,它将从上次 停止的地方继续开始运行。这个过程会持续,直到所有的活动微进程都完成了运行过程。这就是使用stackless达到合作式多任务的方式。
2.3 通道(channel)
通道使得微进程之间的信息传递成为可能。它做到了两件事:
又一个快速演示:
接收的微进程调用channel.receive()的时候,便阻塞住,这意味着该微进程暂停执行,直到有信息从这个通道送过来。除了往这个通道发送信息以外,没有其他任何方式可以让这个微进程恢复运行。
若有其他微进程向这个通道发送了信息,则不管当前的调度到了哪里,这个接收的微进程都立即恢复执行;而发送信息的微进程则被转移到调度列表的末尾,就像调用了stackless.schele()一样。
同样注意,发送信息的时候,若当时没有微进程正在这个通道上接收,也会使当前微进程阻塞:
发送信息的微进程,只有在成功地将数据发送到了另一个微进程之后,才会重新被插入到调度器中。
2.4 总结
以上涵盖了stackless的大部分功能。似乎不多是吧?——我们只使用了少许对象,和大约四五个函数调用,来进行操作。但是,使用这种简单的API作为基本建造单元,我们可以开始做一些真正有趣的事情。
3 协程(coroutine)
3.1 子例程的问题
大多数传统编程语言具有子例程的概念。一个子例程被另一个例程(可能还是其它某个例程的子例程)所调用,或返回一个结果,或不返回结果。从定义上说,一个子例程是从属于其调用者的。
见下例:
有经验的编程者会看到这个程序的问题所在:它导致了堆栈溢出。如果运行这个程序,它将显示一大堆讨厌的跟踪信息,来指出堆栈空间已经耗尽。
3.1.1 堆栈
我仔细考虑了,自己对C语言堆栈的细节究竟了解多少,最终还是决定完全不去讲它。似乎,其他人对其所尝试的描述,以及图表,只有本身已经理解了的人才能看得懂。我将试着给出一个最简单的说明,而对其有更多兴趣的读者可以从网上查找更多信息。
每当一个子例程被调用,都有一个“栈帧”被建立,这是用来保存变量,以及其他子例程局部信息的区域。于是,当你调用 ping() ,则有一个栈帧被建立,来保存这次调用相关的信息。简言之,这个帧记载着 ping 被调用了。当再调用 pong() ,则又建立了一个栈帧,记载着 pong 也被调用了。这些栈帧是串联在一起的,每个子例程调用都是其中的一环。就这样,堆栈中显示: ping 被调用所以 pong 接下来被调用。显然,当 pong() 再调用 ping() ,则使堆栈再扩展。下面是个直观的表示:
帧 堆栈
1 ping 被调用
2 ping 被调用,所以 pong 被调用
3 ping 被调用,所以 pong 被调用,所以 ping 被调用
4 ping 被调用,所以 pong 被调用,所以 ping 被调用,所以 pong 被调用
5 ping 被调用,所以 pong 被调用,所以 ping 被调用,所以 pong 被调用,所以 ping 被调用
6 ping 被调用,所以 pong 被调用,所以 ping 被调用,所以 pong 被调用,所以 ping 被调用……
现在假设,这个页面的宽度就表示系统为堆栈所分配的全部内存空间,当其顶到页面的边缘的时候,将会发生溢出,系统内存耗尽,即术语“堆栈溢出”。
3.1.2 那么,为什么要使用堆栈?
上例是有意设计的,用来体现堆栈的问题所在。在大多数情况下,当每个子例程返回的时候,其栈帧将被清除掉,就是说堆栈将会自行实现清理过程。这一般 来说是件好事,在C语言中,堆栈就是一个不需要编程者来手动进行内存管理的区域。很幸运,Python程序员也不需要直接来担心内存管理与堆栈。但是由于 Python解释器本身也是用C实现的,那些实现者们可是需要担心这个的。使用堆栈是会使事情方便,除非我们开始调用那种从不返回的函数,如上例中的,那 时候,堆栈的表现就开始和程序员别扭起来,并耗尽可用的内存。
3.2 走进协程
此时,将堆栈弄溢出是有点愚蠢的。 ping() 和 pong() 本不是真正意义的子例程,因为其中哪个也不从属于另一个,它们是“协程”,处于同等的地位,并可以彼此间进行无缝通信。
帧 堆栈
1 ping 被调用
2 pong 被调用
3 ping 被调用
4 pong 被调用
5 ping 被调用
6 pong 被调用
在stackless中,我们使用通道来建立协程。还记得吗,通道所带来的两个好处中的一个,就是能够控制微进程之间运行的流程。使用通道,我们可以在 ping 和 pong 这两个协程之间自由来回,要多少次就多少次,都不会堆栈溢出:
你可以运行这个程序要多久有多久,它都不会崩溃,且如果你检查其内存使用量(使用Windows的任务管理器或Linux的top命令),将会发现 使用量是恒定的。这个程序的协程版本,不管运行一分钟还是一天,使用的内存都是一样的。而如果你检查原先那个递归版本的内存用量,则会发现其迅速增长,直 到崩溃。
3.3 总结
是否还记得,先前我提到过,那个代码的递归版本,有经验的程序员会一眼看出毛病。但老实说,这里面并没有什么“计算机科学”方面的原因在阻碍它的正 常工作,有些让人坚信的东西,其实只是个与实现细节有关的小问题——只因为大多数传统编程语言都使用堆栈。某种意义上说,有经验的程序员都是被洗了脑,从 而相信这是个可以接受的问题。而stackless,则真正察觉了这个问题,并除掉了它。
4 轻量级线程
与当今的操作系统中内建的、和标准Python代码中所支持的普通线程相比,“微线程”要更为轻量级,正如其名称所暗示。它比传统线程占用更少的内存,并且微线程之间的切换,要比传统线程之间的切换更加节省资源。
为了准确说明微线程的效率究竟比传统线程高多少,我们用两者来写同一个程序。
4.1 hackysack模拟
Hackysack是一种游戏,就是一伙脏乎乎的小子围成一个圈,来回踢一个装满了豆粒的沙包,目标是不让这个沙包落地,当传球给别人的时候,可以耍各种把戏。踢沙包只可以用脚。
在我们的简易模拟中,我们假设一旦游戏开始,圈里人数就是恒定的,并且每个人都是如此厉害,以至于如果允许的话,这个游戏可以永远停不下来。
4.2 游戏的传统线程版本
⑷ python多进程,多线程分别是并行还是并发
并发和并行
你吃饭吃到一半,电话来了,你一直到吃完了以后才去接,这就说明你不支持并发也不支持并行。
你吃饭吃到一半,电话来了,你停了下来接了电话,接完后继续吃饭,这说明你支持并发。
你吃饭吃到一半,电话来了,你一边打电话一边吃饭,这说明你支持并行。
并发的关键是你有处理多个任务的能力,不一定要同时。
并行的关键是你有同时处理多个任务的能力。
所以我认为它们最关键的点就是:是否是‘同时’。
Python 中没有真正的并行,只有并发
无论你的机器有多少个CPU, 同一时间只有一个Python解析器执行。这也和大部分解释型语言一致, 都不支持并行。这应该是python设计的先天缺陷。
javascript也是相同的道理, javascript早起的版本只支持单任务,后来通过worker来支持并发。
Python中的多线程
先复习一下进程和线程的概念
所谓进程,简单的说就是一段程序的动态执行过程,是系统进行资源分配和调度的一个基本单位。一个进程中又可以包含若干个独立的执行流,我们将这些执行流称为线程,线程是CPU调度和分配的基本单位。同一个进程的线程都有自己的专有寄存器,但内存等资源是共享的。
这里有一个更加形象的解释, 出自阮一峰大神的杰作:
http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html
Python中的thread的使用
通过 thread.start_new_thread 方法
import thread
import time
# Define a function for the thread
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % ( threadName, time.ctime(time.time()) )
# Create two threads as follows
try:
thread.start_new_thread( print_time, ("Thread-1", 2, ) )
thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
print "Error: unable to start thread"
while 1:
pass
通过继承thread
#!/usr/bin/python
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name
def print_time(threadName, delay, counter):
while counter:
if exitFlag:
threadName.exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1
# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# Start new Threads
thread1.start()
thread2.start()
print "Exiting Main Thread"
线程的同步
#!/usr/bin/python
import threading
import time
class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# Get lock to synchronize threads
threadLock.acquire()
print_time(self.name, self.counter, 3)
# Free lock to release next thread
threadLock.release()
def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1
threadLock = threading.Lock()
threads = []
# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# Start new Threads
thread1.start()
thread2.start()
# Add threads to thread list
threads.append(thread1)
threads.append(thread2)
# Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"
利用multiprocessing多进程实现并行
进程的创建
Python 中有一套类似多线程API 的的类来进行多进程开发: multiprocessing
这里是一个来自官方文档的例子:
from multiprocessing import Process
def f(name):
print 'hello', name
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
类似与线程,一可以通过继承process类来实现:
from multiprocessing import Process
class Worker(Process):
def run(self):
print("in" + self.name)
if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()
进程的通信
Pipe()
pipe()函数返回一对由双向通信的管道连接的对象,这两个对象通过send, recv 方法实现 信息的传递
from multiprocessing import Process, Pipe
def f(conn):
conn.send([42, None, 'hello'])
conn.close()
if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print parent_conn.recv() # prints "[42, None, 'hello']"
p.join()
Quene
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])
if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()
进程间的同步
Python 中多进程中也有类似线程锁的概念,使用方式几乎一样:
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
print 'hello world', i
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
进程间的共享内存
每个进程都有独自的内存,是不能相互访问的, 也行 python官方觉得通过进程通信的方式过于麻烦,提出了共享内存的概念,以下是官方给出的例子:
from multiprocessing import Process, Value, Array
def f(n, a):
n.value = 3.1415927
for i in range(len(a)):
a[i] = -a[i]
if __name__ == '__main__':
num = Value('d', 0.0)
arr = Array('i', range(10))
p = Process(target=f, args=(num, arr))
p.start()
p.join()
print num.value
print arr[:]
总结
python通过多进程实现多并行,充分利用多处理器,弥补了语言层面不支持多并行的缺点。Python, Node.js等解释型语言似乎都是通过这种方式来解决同一个时间,一个解释器只能处理一段程序的问题, 十分巧妙。
⑸ 如何用Python一门语言通吃高性能并发,GPU计算和深度学习
第一个就是并发本身所带来的开销即新开处理线程、关闭处理线程、多个处理线程时间片轮转所带来的开销。
实际上对于一些逻辑不那么复杂的场景来说这些开销甚至比真正的处理逻辑部分代码的开销更大。所以我们决定采用基于协程的并发方式,即服务进程只有一个(单cpu)所有的请求数据都由这个服务进程内部来维护,同时服务进程自行调度不同请求的处理顺序,这样避免了传统多线程并发方式新建、销毁以及系统调度处理线程的开销。基于这样的考虑我们选择了基于Tornado框架实现api服务的开发。Tornado的实现非常简洁明了,使用python的生成器作为协程,利用IOLoop实现了调度队列。
第二个问题是数据库的性能,这里说的数据库包括MongoDB和Redis,我这里分开讲。
先讲MongoDB的问题,MongoDB主要存储不同的用户对于验证的不同设置,比如该显示什么样的图片。
一开始每次验证请求都会查询MongoDB,当时我们的MongoDB是纯内存的,同时三台机器组成一个复制集,这样的组合大概能稳定承载八九千的qps,后来随着我们验证量越来越大,这个承载能力逐渐就成为了我们的瓶颈。
为了彻底搞定这个问题,我们提出了最极端的解决方案,干脆直接把数据库中的数据完全缓存到服务进程里定期批量更新,这样查询的开销将大大降低。但是因为我们用的是Python,由于GIL的存在,在8核服务器上会fork出来8个服务进程,进程之间不像线程那么方便,所以我们基于mmap自己写了一套伙伴算法构建了一个跨进程共享缓存。自从这套缓存上线之后,Mongodb的负载几乎变成了零。
说完了MongoDB再说Redis的问题,Redis代码简洁、数据结构丰富、性能强大,唯一的问题是作为一个单进程程序,终究性能是有上限的。
虽然今年Redis发布了官方的集群版本,但是经过我们的测试,认为这套分布式方案的故障恢复时间不够优秀并且运维成本较高。在Redis官方集群方案面世之前,开源世界有不少proxy方案,比如Twtter的TwemProxy和豌豆荚的Codis。这两种方案测试完之后给我们的感觉TwemProxy运维还是比较麻烦,Codis使用起来让人非常心旷神怡,无论是修改配置还是扩容都可以在配置页面上完成,并且性能也还算不错,但无奈当时Codis还有比较严重的BUG只能放弃之。
几乎尝试过各种方案之后,我们还是下决心自己实现一套分布式方案,目的是高度贴合我们的需求并且运维成本要低、扩容要方便、故障切换要快最重要的是数据冗余一定要做好。
基于上面的考虑,我们确定基于客户端的分布式方案,通过zookeeper来同步状态保证高可用。具体来说,我们修改Redis源码,使其向zookeeper注册,客户端由zookeeper上获取Redis服务器集群信息并根据统一的一致性哈希算法来计算数据应该存储在哪台Redis上,并在哈希环的下一台Redis上写入一份冗余数据,当读取原始数据失败时可以立即尝试读取冗余数据而不会造成服务中断。
⑹ python有什么好的大数据/并行处理框架
从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。
Django: Python Web应用开发框架
Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2
模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数
据库、窗体验证工具。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py:创造矢量地图的轻量级Python框架
Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。
Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Web2py:全栈式Web框架
Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
Buildbot:基于Python的持续集成测试框架
Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。
Zerorpc:基于ZeroMQ的高性能分布式RPC框架
Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。
Bottle: 微型Python Web框架
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
Tornado:异步非阻塞IO的Python Web框架
Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。
webpy: 轻量级的Python Web框架
webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。
Scrapy:Python的爬虫框架
Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。