当前位置:首页 » 编程语言 » 时间序列python

时间序列python

发布时间: 2023-08-22 13:58:07

python数据分析时间序列如何提取一个月的数据

Pandas中,最基本的时间序列类型就是以时间戳为索引的Series对象。

时间戳使用Timestamp(Series派生的子类)对象表示,该对象与datetime具有高度的兼容性,可以直接通过to_datetime()函数将datetime转换为TimeStamp对象。

import pandas as pd # 导入pandas模块,并起个别名pd from datetime import datetime import numpy as np pd.to_datetime('20200828') # 将datetime转换为Timestamp对象
Timestamp('2020-08-28 00:00:00')
当传入的是多个datetime组成的列表,则Pandas会将其强制转换为DatetimeIndex类对象。

# 传入多个datetime字符串 date_index = pd.to_datetime(['20200820', '20200828', '20200908']) date_index
DatetimeIndex(['2020-08-20', '2020-08-28', '2020-09-08'],
dtype='datetime64[ns]', freq=None)
如何取出第一个时间戳

date_index[0] # 取出第一个时间戳
Timestamp('2020-08-20 00:00:00')
2.在Pandas中,最基本的时间序列类型就是以时间戳为索引的Series对象。

# 创建时间序列类型的Series对象 date_ser = pd.Series([11, 22, 33], index=date_index) date_ser
2020-08-20 11
2020-08-28 22
2020-09-08 33
dtype: int64
也可将包含多个datetime对象的列表传给index参数,同样能创建具有时间戳索引的Series对象。

# 指定索引为多个datetime的列表 date_list = [datetime(2020, 1, 1), datetime(2020, 1, 15), datetime(2020, 2, 20), datetime(2020, 4, 1), datetime(2020,

❷ python(pandas模块)

Pandas是Python的一个数据分析包,最初由AQR Capital
Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的Pydata开发team继续开发和维护,属于PyData项目的一部分,pandas最初被作为金融数据分析工具而开发出来,因此pandas为时间序列分析提供了很好的支持。

Pandas的名称来自于面板数据和python数据分析。panel
data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。

Pandas数据结构:

Series:一维数组,与numpy中的一维array类似。二者与Python基本的数据结构list相近,Series如今能保存不同种数据类型,字符串、boolean值、数字等都能保存在series中。

Time-series:以时间为索引的series。

DataFrame:二维的表格型数据结构,很多功能与R中的data.frame类似,可以将DataFrame理解为Series的容器。

Panel :三维的数组,可以理解为DataFrame的容器。

Panel4D:是像Panel一样的4维数据容器。

PanelND:拥有factory集合,可以创建像Panel4D一样N维命名容器的模块。

❸ 利用Python进行数据分析(9)-重采样resample和频率转换

Python-for-data-重新采样和频率转换

重新采样指的是将时尺耐间序列从一个频率转换到另一个频率的过程。

但是也并不是所有的采样方式都是属于上面的两种

pandas中使用resample方法来实现频率转换,下面是resample方法的参数详解:

将数据聚合到一个规则的低频上,例如将时间转换为每个月,"M"或者"BM",将数据分成一个月的时间间隔。

每个间隔是半闭合的,一个数据只能属于一个时间间隔。时间间隔的并集必须是整个时间帧

默认情况下,左箱体边界是包含的。00:00的值是00:00到00:05间隔内的值

产生的时间序列按照每个箱体左边的时间戳被标记。

传递<span class="mark">label="right"</span>可以使用右箱体边界标记时间序列

向loffset参数传递字符串或者日期偏置

在金融数据中,为每个数据桶计算4个值是常见知困物的问题:

通过<span class="girk">ohlc聚合函数</span>能够得到四种聚合值列的DF数据

低频搭液转到高频的时候会形成缺失值

ffill() :使用前面的值填充, limit 限制填充的次数

❹ python中时间序列数据的一些处理方式

datetime.timedelta对象代表两个时间之间的时间差,两个date或datetime对象相减就可以返回一个timedelta对象。
利用以下数据进行说明:

如果我们发现时间相关内容的变量为int,float,str等类型,不方便后面的分析,就需要使用该函数转化为常用的时间变量格式:pandas.to_datetime

转换得到的时间单位如下:

如果时间序列格式不统一,pd.to_datetime()的处理方式:

当然,正确的转换是这样的:

第一步:to_datetime()
第二步:astype(datetime64[D]),astype(datetime64[M])

本例中:

order_dt_diff必须是Timedelta(Ɔ days 00:00:00')格式,可能是序列使用了diff()
或者pct_change()。

前者往往要通过'/np.timedelta'去掉单位days。后者其实没有单位。

假如我们要统计某共享单车一天内不同时间点的用户使用数据,例如

还有其他维度的提取,年、月、日、周,参见:
Datetime properties

注意 :.dt的对象必须为pandas.Series,而不可以是Series中的单个元素

❺ python时间序列模型预测为什么时一条直线

python时间序列模型预测塌含时一条直线是因为是线性模型的原因。线性模型也称作趋势模型,它表示一个时间序列可以用一条直线来表示。它的基本等式:以一个公司的销售总额为例,一开始的初始是5000,每隔一个时间步长增加2500。指数平滑法是时间序列分析方法中的一种。它是一种用于预测未来发展趋势的建模算法。它有三种不同形式:一次指数平滑法、二次指备纤数平滑法、及三次指数平滑法。三种指数平滑法都要更新上一时间步长的计算结果,并使用当仿衫仿前时间步长的数据中包含的新信息。通过混合新信息和旧信息来实现。

❻ 如何学习python数据分析

第一阶段:Python编程语言核心基础

快速掌握一门数据科学的有力工具。

第二阶段:Python数据分析基本工具

通过介基猛或绍NumPy、Pandas、MatPlotLib、Seaborn等工知巧具,快速具备数据分析的专业范儿。

第三阶段:Python语言描述的数学基础

概率统计、线性代数、时间序列分析、随机过程是构建数据科学的基石,这里独树一帜,通过python语言描述这些数学,快速让数学知识为我所用,融会贯通。

第四阶段:机器学习典型算法专题

这一部分利用前面介绍的基础知识,对搏伍机器学习的常用核心算法进行抽丝剥茧、条分缕析、各个击破。

第五阶段:实战环节深度应用

在这一部分利用已有的知识进行实战化的数据分析,例如:对基金投资策略、城市房屋租赁等热门数据展开围猎。

热点内容
php小票打印机 发布:2025-02-05 03:42:00 浏览:613
vivo安卓手机如何连接蓝牙耳机 发布:2025-02-05 03:40:30 浏览:957
youtubeapp缓存 发布:2025-02-05 03:33:10 浏览:747
vc遍历文件夹 发布:2025-02-05 03:33:09 浏览:479
怎么设dns服务器地址 发布:2025-02-05 03:31:57 浏览:758
访问服务器文件夹 发布:2025-02-05 03:29:38 浏览:38
新手机的密码在哪里 发布:2025-02-05 03:28:04 浏览:480
lol按键源码 发布:2025-02-05 03:11:47 浏览:899
wordpress安装linux 发布:2025-02-05 03:01:53 浏览:140
c语言中的temp 发布:2025-02-05 02:43:08 浏览:125