java图的最短路径
A. 用java怎么用迪杰斯特拉算有向图有权值的最短路径
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下:
1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储已遍历的节点
2.初始阶段,将初始节点放入close,其他所有节点放入open
3.以初始节点为中心向外一层层遍历,获取离指定节点最近的子节点放入close并从新计算路径,直至close包含所有子节点
代码实例如下:
Node对象用于封装节点信息,包括名字和子节点
[java] view plain
public class Node {
private String name;
private Map<Node,Integer> child=new HashMap<Node,Integer>();
public Node(String name){
this.name=name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Map<Node, Integer> getChild() {
return child;
}
public void setChild(Map<Node, Integer> child) {
this.child = child;
}
}
MapBuilder用于初始化数据源,返回图的起始节点
[java] view plain
public class MapBuilder {
public Node build(Set<Node> open, Set<Node> close){
Node nodeA=new Node("A");
Node nodeB=new Node("B");
Node nodeC=new Node("C");
Node nodeD=new Node("D");
Node nodeE=new Node("E");
Node nodeF=new Node("F");
Node nodeG=new Node("G");
Node nodeH=new Node("H");
nodeA.getChild().put(nodeB, 1);
nodeA.getChild().put(nodeC, 1);
nodeA.getChild().put(nodeD, 4);
nodeA.getChild().put(nodeG, 5);
nodeA.getChild().put(nodeF, 2);
nodeB.getChild().put(nodeA, 1);
nodeB.getChild().put(nodeF, 2);
nodeB.getChild().put(nodeH, 4);
nodeC.getChild().put(nodeA, 1);
nodeC.getChild().put(nodeG, 3);
nodeD.getChild().put(nodeA, 4);
nodeD.getChild().put(nodeE, 1);
nodeE.getChild().put(nodeD, 1);
nodeE.getChild().put(nodeF, 1);
nodeF.getChild().put(nodeE, 1);
nodeF.getChild().put(nodeB, 2);
nodeF.getChild().put(nodeA, 2);
nodeG.getChild().put(nodeC, 3);
nodeG.getChild().put(nodeA, 5);
nodeG.getChild().put(nodeH, 1);
nodeH.getChild().put(nodeB, 4);
nodeH.getChild().put(nodeG, 1);
open.add(nodeB);
open.add(nodeC);
open.add(nodeD);
open.add(nodeE);
open.add(nodeF);
open.add(nodeG);
open.add(nodeH);
close.add(nodeA);
return nodeA;
}
}
图的结构如下图所示:
Dijkstra对象用于计算起始节点到所有其他节点的最短路径
[java] view plain
public class Dijkstra {
Set<Node> open=new HashSet<Node>();
Set<Node> close=new HashSet<Node>();
Map<String,Integer> path=new HashMap<String,Integer>();//封装路径距离
Map<String,String> pathInfo=new HashMap<String,String>();//封装路径信息
public Node init(){
//初始路径,因没有A->E这条路径,所以path(E)设置为Integer.MAX_VALUE
path.put("B", 1);
pathInfo.put("B", "A->B");
path.put("C", 1);
pathInfo.put("C", "A->C");
path.put("D", 4);
pathInfo.put("D", "A->D");
path.put("E", Integer.MAX_VALUE);
pathInfo.put("E", "A");
path.put("F", 2);
pathInfo.put("F", "A->F");
path.put("G", 5);
pathInfo.put("G", "A->G");
path.put("H", Integer.MAX_VALUE);
pathInfo.put("H", "A");
//将初始节点放入close,其他节点放入open
Node start=new MapBuilder().build(open,close);
return start;
}
public void computePath(Node start){
Node nearest=getShortestPath(start);//取距离start节点最近的子节点,放入close
if(nearest==null){
return;
}
close.add(nearest);
open.remove(nearest);
Map<Node,Integer> childs=nearest.getChild();
for(Node child:childs.keySet()){
if(open.contains(child)){//如果子节点在open中
Integer newCompute=path.get(nearest.getName())+childs.get(child);
if(path.get(child.getName())>newCompute){//之前设置的距离大于新计算出来的距离
path.put(child.getName(), newCompute);
pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"->"+child.getName());
}
}
}
computePath(start);//重复执行自己,确保所有子节点被遍历
computePath(nearest);//向外一层层递归,直至所有顶点被遍历
}
public void printPathInfo(){
Set<Map.Entry<String, String>> pathInfos=pathInfo.entrySet();
for(Map.Entry<String, String> pathInfo:pathInfos){
System.out.println(pathInfo.getKey()+":"+pathInfo.getValue());
}
}
/**
* 获取与node最近的子节点
*/
private Node getShortestPath(Node node){
Node res=null;
int minDis=Integer.MAX_VALUE;
Map<Node,Integer> childs=node.getChild();
for(Node child:childs.keySet()){
if(open.contains(child)){
int distance=childs.get(child);
if(distance<minDis){
minDis=distance;
res=child;
}
}
}
return res;
}
}
Main用于测试Dijkstra对象
[java] view plain
public class Main {
public static void main(String[] args) {
Dijkstra test=new Dijkstra();
Node start=test.init();
test.computePath(start);
test.printPathInfo();
}
}
B. java中如何邻接矩阵遍历最短路径长度
packagetest;
importjava.util.ArrayList;
import清厅java.util.List;
/**
*java-用邻接矩阵求图的最短路径、最长途径。弗洛伊德算法
*/
publicclassFloydInGraph{
privatestaticintINF=Integer.MAX_VALUE;
privateint[][]dist;
privateint[][]path;
privateList<Integer>result=newArrayList<Integer>();
publicFloydInGraph(intsize){
this.path=newint[size][size];
this.dist=newint[size][size];
}
publicvoidfindPath(inti,intj){
intk=path[i][j];
答如隐if(k==-1)return;
findPath(i,k);
result.add(k);
findPath(k,j);
}
publicvoidfindCheapestPath(intbegin,intend,int[][]matrix){
floyd(matrix);
result.add(begin);
findPath(begin,end);
result.add(end);
}
publicvoidfloyd(int[][]matrix){
intsize=matrix.length;
for(inti=0;i<size;i++){
for(intj=0;j<size;j++){
path[i][j]=-1;
dist[i][j]=matrix[i][j];
}
}
for(intk=0;k<size;k++){
for(inti=0;i<size;i++){
for(intj=0;j<size;j++){
if(dist[i][k]!=INF&&
dist[k][j]!=INF&&
橡伍dist[i][k]+dist[k][j]<dist[i][j]){//dist[i][k]+dist[k][j]>dist[i][j]-->longestPath
dist[i][j]=dist[i][k]+dist[k][j];
path[i][j]=k;
}
}
}
}
}
publicstaticvoidmain(String[]args){
FloydInGraphgraph=newFloydInGraph(5);
int[][]matrix={
{INF,30,INF,10,50},
{INF,INF,60,INF,INF},
{INF,INF,INF,INF,INF},
{INF,INF,INF,INF,30},
{50,INF,40,INF,INF},
};
intbegin=0;
intend=4;
graph.findCheapestPath(begin,end,matrix);
List<Integer>list=graph.result;
System.out.println(begin+"to"+end+",thecheapestpathis:");
System.out.println(list.toString());
System.out.println(graph.dist[begin][end]);
}
}
C. 求java实现矩阵图上任意两点的最短路径源码
我用的是递归调用方法,有个小问题就是在打印步数的时候是返向的,原因是就是程序不断的调用自己,到最后判断基值位准退出调用。这才开始从栈里取出方法进行执行的原因。
代码欣赏:
publicstaticintstep=1;
=newStringBuffer();
publicstaticint[][]maze={{1,1,1,1,1,1,1,1,1,1,1},
{1,0,1,0,1,0,0,0,0,0,1},
{1,0,1,0,0,0,1,0,1,1,1},
{1,0,0,0,1,0,1,0,0,0,1},
{1,0,1,1,0,0,1,0,0,1,1},//0代表可以通过,1代表不可通过
{1,0,1,0,1,1,0,1,0,0,1},
{1,0,0,0,0,0,0,0,1,0,1},
{1,0,1,0,1,0,1,0,1,0,1},
{1,0,0,1,0,0,1,0,1,0,1},
{1,1,1,1,1,1,1,1,1,1,1}};
publicstaticvoidmain(String[]args){
inti,j;//循环记数变量
Sample.way(1,1);//二维数组起始值从下标1,1开始
System.out.println("起点从坐标x=1,y=1开始");
System.out.println("终点坐标是x=8,y=9结束");
System.out.println("这是迷宫图表");
System.out.println("012345678910");
System.out.println("+---+---+---+---+---+---+---+---+---+---+---+---+---+");
for(i=0;i<10;i++){
System.out.print(""+i+"‖");
for(j=0;j<11;j++)
System.out.print("-"+maze[i][j]+"-‖");
System.out.println("");
System.out.println("+---+---+---+---+---+---+---+---+---+---+---+---+---+");
}
//打印显示步数
System.out.print(printStep.toString());
}
publicstaticbooleanway(intx,inty){
if(maze[8][9]==2)//代表递归终止条件(也就是当走出出口时标记为2)
returntrue;
else{
if(maze[y][x]==0){
maze[y][x]=2;
/*
*下面if判断条件代表当前坐标为基点,
*根据判断对当前位置进行递归调用:如:
*往上、往右上、往右、往右下、往下、
*往左下、往左、往左上的坐标是否可走,
*判断是否可走的返回条件是:
*2代表可通过、1代表不能通过、3表示已经走过,但是未能走通。
*/
if(way(x,y-1)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x+1,y-1)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x+1,y)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x+1,y+1)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x,y+1)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x-1,y+1)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x-1,y)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}elseif(way(x-1,y-1)){
printStep.append("第"+step+"步的所走的位置是x="+x+"y="+y+" ");
step++;
returntrue;
}else{
maze[y][x]=3;
returnfalse;
}
}else
returnfalse;
}
}
复制代码前需要楼主自己创建个类
Sample.way(1,1);这句代码是我的类的静态调用,改下XXXXX.way(1,1);
XXXXX代表你创建的类。
下面是这个程序运行后的截图