pythonexcel排序
1. python 按年份从小到大排序
要按照年份从小到大对Python列表进行排序,可以使用列表的sort()方法,同时指定一个lambda函数来提取年份并进行比较。
以下是示例代码:
# 定义包含年份的列表
years = [1988, 1999, 1976, 2005, 1968, 2010]
# 使用lambda函数来提取年份并进行比较
years.sort(key=lambda x: x)
# 打印排序后的年份列表
print(years)
在这个示例代码中,我们首先定义了一个包含年份的列表。然后,我们使用sort()方法来对列樱桥亏表进行排序,并指定一个lambda函数作为key参数,该函数提取列表中每脊神个元素的年份值进行比较。最后,我们打印排序后的年份列表,以检查排序是否消唯成功。
输出结果应该是:
[1968, 1976, 1988, 1999, 2005, 2010]
这表明列表按照年份从小到大进行了排序。
2. python数据同时排序
Python列表具有内置的 list.sort()方法,可以在原地修改列表。 还有一个 sorted()内置的函数从迭代构建一个新的排序列表。在本文中,我们将探讨使用Python排序数据的各种技术。
请注意,sort()原始数据被破坏,sorted()没有对原始数据进行操作,而是新建了一个新数据。
一、基本的排序
最基本的排序很简单。只要使用sorted()函数即可返回一个 新的排序的列表
>>>sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
咱们也可以使用 list.sort()方法。该方法是对列表list进行的原地操作(原数据被修改,已经不是原来的本来面目)。一般情况下,不如使用 sorted()方便,但是如果你不需要原列表list,使用 sort()会更具效率。
>>>a = [5, 2, 3, 1, 4]
>>>a.sort()
>>>a #a发生改变
[1, 2, 3, 4, 5]
另一个不同点, list.sort()方法只能应用于列表对象数据。而 sorted()却可以对任何可迭代对象进行排序。也就是说sorted()更具有普遍使用性。这里大灯建议初学者使用sorted()。
二、Key参数函数
list.sort()和 sorted()都有key参数,可以指定函数来对元素进行排序。
例如,这里我们使用一个字符串(字符串也是可迭代对象)
>>>sorted("This is a test string from Andrew".split(), key=str.lower)
3. python常见的三种列表排序算法分别是什么
排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的任意序列,重新排列成一个关键字有序的序列。那么python列表排序算法有哪些?本文主要为大家讲述python中禅棚经常用的三种排序算法:冒泡排序、插入排序和选择排序。
1、冒泡排序
冒泡排序,Bubble
Sort,是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢浮到数列的顶端。
2、插入排序
插戚袭差入排序,Insertion
Sort,是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前的扫描过程中,需要把已排序元素逐步向后挪位,为最新元素提供插入空间。
3、选择高皮排序
选择排序,Selection
Sort,是一种简单直观的排序算法。它的工作原理如下:首先在未排序序列中找到最小、最大元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小、最大元素。放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
4. python实现字符串行表排序
a = ['b', 'a', 'c', 'ab', 'aa', 'aaa']
a.sort(key=lambda x: str(len(x)) + x)
print(a)
#['a', 'b', 'c', 'aa', 'ab', 'aaa']
5. Python对数据进行排序-中英文
sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')
参数说明:
by: 可以填入字符串或者字符串组成的列表。也就是说, 如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
axis: {0 or ‘index’, 1 or ‘columns’}, default 0,意思就是如果 axis=0,就按照索引排序,即纵向排序;如果axis=1,则按列排序,即横向排序。默认是axis=0 。
ascending: 输入布尔型, True是升序 , False是降序 ,也可以可以是[True,False],即第一个字段升序,第二个字段降序 。
inplace : 输入布尔型,是否用排序后的数据框替换现有的数据框
kind: 排序的方法,{‘quicksort’, ‘mergesort’, ‘heapsort’},默认是使用‘quicksort’。这个参数用的比较少,大家可以试一试。
na_position : {‘first’, ‘last’}, 缺失值的排序 ,也就说决定将缺失值放在数据的最前面还是最后面 。first是排在前面,last是排在后面,默认是用last 。
例子:
scores= pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],columns=['jack', 'rose', 'mike'])
scores
1.对‘rose’这一列进行降序排序:
df_sc=scores.sort_values(by='rose',ascending=False)
df_sc
2.对第0行进行升序排序:
scores.sort_values(by=0,axis=1,ascending=True)
3.第1行进行升序,第0行进行降序:
scores.sort_values(by=[1,0],axis=1,ascending=[True,False]
4.观察数据
data.head:
查看数据的前五行。
data.tail:
查看数据的后五行。
data.shape :
查看矩阵或数组的维数,或者是说数据表的结构(有几行几列)。
data.info :
查看数据的基本信息,如:数据类型、缺失值数量等。
#brand目标:中文-中英-英文
2.1 包含中文,纯英文
for i in range(0,len(file1)):
result = re.compile(u'[\u4e00-\u9fa5]')
contents = file1['brand'][i]
match = result.search(contents)
if match:
file1.loc[i,['index1']]=0 #0为包含中文
else:
file1.loc[i,['index1']]=1 #1为纯英文
2.1 包含英文,纯中文
for i in range(0,len(file1)):
file1.loc[i,['index2']]=len(re.findall('[a-zA-Z]+', file1['brand'][i]) ) #0为纯中文,1为包含英文
6. Python对列表排序函数sort()和reverse()的讲解
列表中的数据种类很多,有字符串,有整型,有其他列表的嵌套,还有更多的数据类型,这些数据在列表中往往是错乱的,没有一定的逻辑关系,但是我们在使用列表的时候往往需要按照一定的逻辑关系进行调用或检索。下面就来看看 列表是如何排序和翻转的 ,所谓翻转也就是把既定列表倒序排列。
返回结果:
从上面的返回结果可以看出来,sort()函数如果遇到字符串是按照首字母顺序进行排列的,如果遇到浮点型数据还是按照大小排列。
由上面的结果可以看出来,不同的数据类型是没有办法进行排列的。
这个方法是把原列表中的元素顺序从左至右的重新存放,而不会对列表中的参数进行排序整理。如果需要对列表中的参数进行整理,就需要用到列表的另一种排序方式sort正序排序。