python爬虫解析
A. python爬虫如何写
Python的爬虫库其实很多,像常见的urllib,requests,bs4,lxml等,初始入门爬虫的话,可以学习一下requests和bs4(BeautifulSoup)这2个库,比较简单,也易学习,requests用于请求页面,BeautifulSoup用于解析页面,下面我以这2个库为基础,简单介绍一下Python如何爬取网页静态数据和网页动态数据,实验环境win10+python3.6+pycharm5.0,主要内容如下:
Python爬取网页静态数据
这个就很简单,直接根据网址请求页面就行,这里以爬取糗事网络上的内容为例:
1.这里假设我们要爬取的文本内容如下,主要包括昵称、内容、好笑数和评论数这4个字段:
打开网页源码,对应网页结构如下,很简单,所有字段内容都可以直接找到:
2.针对以上网页结构,我们就可以编写相关代码来爬取网页数据了,很简单,先根据url地址,利用requests请求页面,然后再利用BeautifulSoup解析数据(根据标签和属性定位)就行,如下:
程序运行截图如下,已经成功爬取到数据:
Python爬取网页动态数据
很多种情况下,网页数据都是动态加载的,直接爬取网页是提取不到任何数据的,这时就需要抓包分析,找到动态加载的数据,一般情况下就是一个json文件(当然,也敬链誉可能是其他类型的文件,像xml等),然后请求解析这个json文件,就能获取到我们需要的数据,这里以爬取人人贷上面的散标数据为例:
1.这里假设我们爬取的数据如下,主要包括年亮段利率,借款标题,期限,金额,进度这5个字段:
2.按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找到动态加载的json文件,具体信息如下:
3.接着,针对以上抓包分析,我们就可以编写相关代码来爬取数据了,基本思路和上面的静态网页差不多,先利用requests请求json,然后再利用python自带的json包解析数据就行,如下:
程序运行截图如下,已经成功获取到数据:
至此,我们就完成了利用python来爬取网页数据。总的来说,整个过程很简单,requests和BeautifulSoup对于初学者来说,非常容易学习,也易掌握,可以学习使用一下,后期熟悉后,可以学习一下scrapy爬虫框架,可以明显提高开发效率,非常不错,当然,网页中要是有加密、验证码等,这个就需要自己好好琢磨,研究对策了,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分唤陆享的内容能对你上有所帮助吧,也欢迎大家评论、留言。
B. python爬虫如何分析一个将要爬取的网站
首先,你去爬取一个网站,
你会清楚这个网站是属于什么类型的网站(新闻,论坛,贴吧等等)。
你会清楚你需要哪部分的数据。
你需要去想需要的数据你将如何编写表达式去解析。
你会碰到各种反爬措施,无非就是各种网络各种解决。当爬取成本高于数据成本,你会选择放弃。
你会利用你所学各种语言去解决你将要碰到的问题,利用各种语言的client组件去请求你想要爬取的URL,获取到HTML,利用正则,XPATH去解析你想要的数据,然后利用sql存储各类数据库。
C. python爬虫如何分析一个将要爬取的网站
爬取网页数据,需要一些工具,比如requests,正则表达式,bs4等,解析网页首推bs4啊,可以通过标签和节点抓取扒拍数据。
正巧简闷,我最近发布了一篇文章就是抓取网页数据分析的,有完整的抓取步骤,你可以看一下?不好意思给自己打了一下广春咐羡告?
D. python爬虫:微博评论分析
最近王和李的离婚亮嫌轿闹得沸沸扬扬,相信大伙们都已经吃了不少的瓜。本文结合李的第一篇文章发文下面的网友们的评论来看看大家到底怎么看待这件事。
数据来自该地址: https://weibo.com/5977512966/L6w2sfDXb#comment
爬取的下面的全部评论:
微博的网页属于Ajax渲染,当我们向下滑动的时候会显示的评论,地址栏的URL不变,需要找到实际的请求URL。
1、右击【检查】,找到【Network】
2、确定每页的内容URL
这里是首页部分
滑动之后显示每页内容的URL;
3、每页的URL地址
从第二页开始的URL地址多的部分是max_id,刚好这个参数的值是前一页的返回内容:
4、介绍第一页的爬取
比如我们可以获取第一个用户的相关信息:
最终我们可以看到第一页爬取的数据展示:
参考上面的逻辑可以爬取到微博下面的全部评论
导入需要的库:
查看我们爬取到数据的基本信息,我们导入前5行数据:
基本信息:查看数据的shape形状,总共是47638行,8个字段,并且不存在缺失值。
将敬肆我们爬取到的格林威治形式的时间转成熟悉的标准化时间形式:
国内的省份中北京、广东、上海、江苏都是吃瓜的大省份!
果然:女性真的很爱吃瓜🍉远超男性
通过点赞数和回复数来看看这篇微博下的火爆评论:
有位网友的评论87万+的点赞数!666
同样还是这位网友的评论,回复数也是No.1
从点赞数和回复数的整体分布者棚来看,这条评论真的是别树一帜!已经完全偏离了其他的数据:
查看原数据我们发现这条评论就是:
看来以前的很多爆料都被锤啦!
通过用户的年龄和点赞数、回复数来看,用户年龄在7、8、9、10年时的用户更为活跃;年龄偏大或者新生的微博用户的评论较少。
同时点赞数也集中在2000-5000之间的部分
从用户的评论时间点来看,当李发了第一篇文之后,瞬间引爆了评论(左侧密集部分);这条微博沉寂了4天,没有想到23号的晚上又火了
将粉丝的评论内容分词找到他们的重点:
重点关注下前50个词语:
除了两位当事人, 粉丝还比较关心他们的孩子 。毕竟孩子是无辜的,但是他们的瓜不正是孩子引起的吗?个人的看法。
总之:不管是王还是李,如果真的是渣男或者渣女,请上十字架,阿门!
Python爬虫有一个非常厉害的框架Scrapy,我联系了北京大学出版社送两书:《Python网路爬虫框架Scrapy从入门到精通》。 精选两位走心留言的小伙伴
对Python爬虫感兴趣的朋友也可以直接购买喔。
E. python爬虫是干嘛的
爬虫技术是一种自动化程序。
爬虫就是一种可以从网页上抓取数据信息并保存的自动化程序,它的原理就是模拟浏览器发送网络请求,接受请求响应,然后按照一定的规则自动抓取互联网数据。
搜索引擎通过这些爬虫从一个网站爬到另一个网站,跟踪网页中的链接,访问更多的网页,这个过程称为爬行,这些新的网址会被存入数据库等待搜索。简而言之,爬虫就是通过不间断地访问互联网,然后从中获取你指定的信息并返回给你。而我们的互联网上,随时都有无数的爬虫在爬取数据,并返回给使用者。
爬虫技术的功能
1、获取网页
获取网页可以简单理解为向网页的服务器发送网络请求,然后服务器返回给我们网页的源代码,其中通信的底层原理较为复杂,而Python给我们封装好了urllib库和requests库等,这些库可以让我们非常简单的发送各种形式的请求。
2、提取信息
获取到的网页源码内包含了很多信息,想要进提取到我们需要的信息,则需要对源码还要做进一步筛选。可以选用python中的re库即通过正则匹配的形式去提取信息,也可以采用BeautifulSoup库(bs4)等解析源代码,除了有自动编码的优势之外,bs4库还可以结构化输出源代码信息,更易于理解与使用。
3、保存数据
提取到我们需要的有用信息后,需要在Python中把它们保存下来。可以使用通过内置函数open保存为文本数据,也可以用第三方库保存为其它形式的数据,例如可以通过pandas库保存为常见的xlsx数据,如果有图片等非结构化数据还可以通过pymongo库保存至非结构化数据库中。