当前位置:首页 » 编程语言 » python回归预测

python回归预测

发布时间: 2023-07-30 18:14:46

python sklearn 训练完逻辑回归模型之后,怎么使用他做预判

from sklearn import linear_model
建立模型
model = linear_model.LinearRegression()
model.fit(x_train,y_train)
评估模型
score = model.score(x_test, y_test)
预测模型
result = model.predict(x_test)

Ⅱ 求python多元支持向量机多元回归模型最后预测结果导出代码、测试集与真实值R2以及对比图代码

这是一个多元支持向量机回归的模型,以下是一个参考的实现代码:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模拟数据
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割数据
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型训练
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 预测结果
pred_y = model.predict(test_X)# 计算R2r2 = r2_score(test_y, pred_y)
# 对比图
plt.scatter(test_X, test_y, color='darkorange', label='data'指敏)
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代码将数据分为训练数据和测试数据,使用SVR模型对训练唯配枝数据进行训练,然后对测试数据进行预测。计算预测结果与真实值的R2,最后卖逗将结果画出对比图,以评估模型的效果。

Ⅲ python如何绘制预测模型校准图

python绘制预测模型校准图可以使用校准曲线,因为预测一个模型校准的最简单的方法是通过一个称为“校准曲线”的图(也称为“可靠性图”,reliability diagram)。

这个方法主要是将观察到的结果通过概率划分为几类(bin)。因此,属于同一类的观测值具有相近的概率。

对于每个类,校准曲线将预测这个类的平均值,然后将预测概率的平均值与理论平均值(即观察到的目标变量的平均值)进行比较。

你只需要确定类的数量和以下两者之间的分类策略即可:

1、“uniform”,一个0-1的间隔被分为n_bins个类,它们都具有相同的宽度。

2、“quantile”,类的边缘被定义,从而使得每个类都具有相同数量的观测值。

假设你的模型具有良好的精度,则校准曲线将单调增加。但这并不意味着模型已被正确校准。实际上,只有在校准曲线非常接近等分线时(即下图中的灰色虚线),您的模型才能得到很好的校准,因为这将意味着预测概率基本上接近理论概率。

python绘制预测模型中如何解决校准错误:

假设你已经训练了一个分类器,该分类器会产生准确但未经校准的概率。概率校准的思想是建立第二个模型(称为校准器),校准器模型能够将你训练的分类器“校准”为实际概率。

因此,校准包括了将一个一维矢量(未校准概率)转换为另一个一维矢量(已校准概率)的功能。

两种常被用作校准器的方法:

1、保序回归:一种非参数算法,这种非参数算法将非递减的自由格式行拟合到数据中。行不会减少这一事实是很重要的,因为它遵从原始排序。

2、逻辑回归:现在有三种选择来预测概率:普通随机森林、随机森林 + 保序回归、随机森林 + 逻辑回归。

Ⅳ 求python支持向量机多元回归预测代码

这是一段用 Python 来实现 SVM 多元回归预测的代码示例:
# 导入相关核胡库
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据集
X, y = datasets.load_boston(return_X_y=True)
# 将数据集拆分为训练集和测试改塌拦集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建SVM多元回归模型
reg = SVR(C=1.0, epsilon=0.2)
# 训练模型
reg.fit(X_train, y_train)
# 预测结果
y_pred = reg.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
在这段代码中,首先导入了相关的库,包括 SVR 函数衫仔、train_test_split 函数和 mean_squared_error 函数。然后,使用 load_boston 函数加载数据集,并将数据集分为训练集和测试集。接着,使用 SVR 函数创建了一个 SVM 多元回归模型,并使用 fit 函数对模型进行训练。最后,使用 predict 函数进行预测,并使用 mean_squared_error 函数计算均方误差。
需要注意的是,这仅仅是一个示例代码,在实际应用中,可能需要根据项目的需求进行更改,例如使用不同的超参数

热点内容
寒灵之剑脚本 发布:2025-02-07 06:57:12 浏览:118
解压的窗口 发布:2025-02-07 06:44:34 浏览:797
android身份证 发布:2025-02-07 06:36:43 浏览:430
python的库在哪 发布:2025-02-07 06:30:24 浏览:348
带锁的铅笔如何改密码 发布:2025-02-07 06:18:05 浏览:164
ubuntu搭建samba服务器 发布:2025-02-07 05:52:54 浏览:54
小型企业网如何配置可以互通 发布:2025-02-07 05:33:56 浏览:243
09年crv哪个配置好 发布:2025-02-07 05:17:31 浏览:555
nvm源码编译 发布:2025-02-07 05:13:19 浏览:126
防伪码查询源码 发布:2025-02-07 05:09:39 浏览:770