当前位置:首页 » 编程语言 » pythonaxis

pythonaxis

发布时间: 2023-07-18 03:20:19

python数据分析模块:numpy、pandas全解


一维数组情况:

二维数组情况:

3参数情况:

2参数情况:

1参数情况:

一维情况:

二维情况:

一维情况:

二维情况:

一维情况:

二维情况:第三个参数指定维度

只查看行数、或者列数

逗号隔开两个索引

某些行

某些列

可以看出append()函数在二维数组中添加元素,结果转为了一维数组。

那怎么保持二维数组呢?可以设置axis参数按行或者按列添加

可以看出先把二维数组降成了一维数组,再在索引为1的位置添加元素。

那么怎么保持在二维添加元素呢? 同样设置axis参数

也分按行和按列删除

标记缺失值: isnan()函数

补充缺失值:

同样axis参数可以指定拼接按行还是按列

2. hstack()函数:以水平堆叠的方式拼接数组

3. vstack()函数:以垂直堆叠的方式拼接数组

第二个参数还可以是数组,指定拆分的位置

hsplit()函数:横向拆成几个数组

vsplit()函数:纵向拆成几个数组

数组与数组之间的运算

数组与数值的运算

可以指定整个数组求和,还是按行或者按列

axis=0:每一列的元素求和

axis=1:每一行的元素求和

axis=0:每一列求均值

axis=1:每一行求均值

axis=0:每一列求最大值

axis=1:每一行求最大值

pandas有两个重要的数据结构对象:Series和DataFrame。

Series是创建一个一维数组对象,会自动生成行标签。

会自动生成行列标签

也可以用字典形式生成数据

在用字典生成数据的基础上,同时指定行标签

例如对下表的数据进行读取

4月是第四个表,我们应把sheet_name参数指定为3;因为索引是从0开始的。

可以看出read_excel()函数自动创建了一个DataFrame对象,同时自动把第一行数据当做列标签。

可以看出不给出header参数时,该参数默认为0。

header=1时结果如下:

header=None时结果如下:

index_col=0时,第0列为列标签

index_col=0时

usecols=[2]:指定第二列

指定多列

数据如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j1SHxY8y-1637655972909)(C: ypora-user-imagesimage-20211114192949607.png)]

nrows=3时

head()函数中参数为空默认前5行

指定head(3)时如下

numpy模块也是shape

查看特定列的书库类型

特定列数据类型转换

先查看一下所有数据

与单行相比,结果显示的格式不一样了

iloc()挑选:

或者给出区间

挑选数据要么标签,要么索引挑选

或者

或者写成区间

标签挑选

或者索引挑选

先查看一下数据

或者用字典一对一修改

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a6QKIoie-1637655972912)(C: ypora-user-imagesimage-20211123110431201.png)]

isin()函数查看表中是否有该值

查看特定列是否有该值

可以看出上述代码并没有替换,那怎么替换呢?

末尾插入一列

指定插入到哪列

axis参数可以指定删除行还是删除列

指定标签删除

指定索引删除

方法三

指定行标签删除

指定索引删除

方法三:

先查看所有数据

info()函数查看数据类型,还可以查看是否有缺失值

isnull()函数查看是否有缺失值

在numpy模块中用isnan()函数

删除有缺失值的行

删除整行都为缺失值的行: 需要指定how参数

不同列的缺失值设置不同的填充值

默认保留第一个重复值所在的行,删除其他重复值所在的行

保留第一个重复值所在的行

保留最后一个重复值所在的行

是重复的就删除

降序如下

参数指定first时,表示在数据有重复值时,越先出现的数据排名越靠前

获取产品为单肩包的行数据

获取数量>60的行数据

获取产品为单肩包 且 数量>60 的行数据

获取产品为单肩包 或 数量>60 的行数据

stack()函数转换成树形结构

how参数指定外连接

on参数指定按哪一列合并

concat()函数采用 全连接 的方式,没有的数设置为缺失值

重置行标签

效果与concat()一样

末尾添加行元素

指定列求和

指定列求均值

指定列求最值

获取单列的

corr()函数获取相关系数

获取指定列与其他列的相关系数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-46g9qgQw-1637655972913)(C: ypora-user-imagesimage-20211123135643804.png)]

groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。

分组后获取指定列的汇总情况

获取多列的汇总情况

获取多列的情况

ta = pd.read_excel(‘相关性分析.xlsx’)

print(data)

corr()函数获取相关系数

获取指定列与其他列的相关系数

[外链图片转存中…(img-46g9qgQw-1637655972913)]

groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。

分组后获取指定列的汇总情况

获取多列的汇总情况

获取多列的情况






㈡ python axis=0是代表的行还是列

axis=0表示数组的第0轴,因为h本来就只包含1列,你直接做数组运算一下x.sum()就知道了。

㈢ Python对数据进行排序-中英文

sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')

参数说明:

by:  可以填入字符串或者字符串组成的列表。也就是说, 如果axis=0,那么by="列名";如果axis=1,那么by="行名"。

axis:  {0 or ‘index’, 1 or ‘columns’}, default 0,意思就是如果 axis=0,就按照索引排序,即纵向排序;如果axis=1,则按列排序,即横向排序。默认是axis=0 。

ascending:  输入布尔型, True是升序 , False是降序 ,也可以可以是[True,False],即第一个字段升序,第二个字段降序 。

inplace : 输入布尔型,是否用排序后的数据框替换现有的数据框

kind:  排序的方法,{‘quicksort’, ‘mergesort’, ‘heapsort’},默认是使用‘quicksort’。这个参数用的比较少,大家可以试一试。

na_position :  {‘first’, ‘last’}, 缺失值的排序 ,也就说决定将缺失值放在数据的最前面还是最后面 。first是排在前面,last是排在后面,默认是用last 。

例子:

scores= pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],columns=['jack', 'rose', 'mike'])

scores

1.对‘rose’这一列进行降序排序:

df_sc=scores.sort_values(by='rose',ascending=False)

df_sc

2.对第0行进行升序排序:

scores.sort_values(by=0,axis=1,ascending=True)

3.第1行进行升序,第0行进行降序:

scores.sort_values(by=[1,0],axis=1,ascending=[True,False]

4.观察数据

data.head:

查看数据的前五行。

data.tail:

查看数据的后五行。

data.shape :

查看矩阵或数组的维数,或者是说数据表的结构(有几行几列)。

data.info :

查看数据的基本信息,如:数据类型、缺失值数量等。

#brand目标:中文-中英-英文

2.1 包含中文,纯英文

for i in range(0,len(file1)):

    result = re.compile(u'[\u4e00-\u9fa5]')

    contents = file1['brand'][i]

    match = result.search(contents)

    if match:

        file1.loc[i,['index1']]=0    #0为包含中文

    else:

        file1.loc[i,['index1']]=1    #1为纯英文

2.1 包含英文,纯中文

for i in range(0,len(file1)):

    file1.loc[i,['index2']]=len(re.findall('[a-zA-Z]+', file1['brand'][i]) )  #0为纯中文,1为包含英文

㈣ python axis是什么意思

python axis的意思是:1、【axis=0】表述列,【axis=1】表述行;2、等式【axis=i】操作就是沿第i维变化的方向进行。
python axis的意思是:
axis=0表述列
axis=1表述行
就记住axis=i,操作就是沿第i维变化的方向进行;
对于一个4*3*2*3的数组:
axis=0,操作时只有第0维的下标变化其他不变。
axis=1,操作时只有第1维的下标变化其他不变。
axis=2,操作时只有第2维的下标变化其他不变。
axis=3,操作时只有第3维的下标变化其他不变。
相关学习推荐:python视频
以上就是小编分享的关于python axis是什么意思的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

㈤ Python-matplotlib绘制带箭头x-y坐标轴图形

在Python的数据可视化库中,采用matplotlib绘制相关图形时,若不加任何设定,一般的x-y坐标轴是不带箭头且是一个封闭的矩形。我们以Sigmoid函数的绘制,给大家展示一下。

matplotlib的辅助工具,包含一系列对坐标轴设置的框架。其中的axisartist包就用来设置坐标轴的类型。

1.创建画布并引入axisartist工具。

2.绘制带箭头的x-y坐标轴

我们先把原始的如上图的所有坐标轴隐藏,即长方形的四个边。
然后用ax.new_floating_axis在绘图区添加坐标轴x、y,这里的ax.new_floating_axis(0,0),第一个0代表平行直线,第二个0代表该直线经过0点。同样,ax.axis["y"] = ax.new_floating_axis(1,0),则代表竖直曲线且经过0点。
再次,x.axis["x"].set_axisline_style("->", size = 1.0)表示给x轴加上箭头,"->"表示是空箭头,size = 1.0表示箭头大小。ax.axis["y"].set_axisline_style("-|>", size = 1.0)中"-|>"则是实心箭头。
最后,设置x、y轴上刻度显示方向,对于x轴是刻度标签在上面还是下面,y轴则是刻度标签在左边还是右边。

3.在带箭头的x-y坐标轴背景下,绘制函数图像

tist坐标轴工具——将原始坐标轴均隐藏掉——添加新的基于原点的x与y轴——为新坐标轴加入箭头,并设置刻度显示方式——加入图形。

热点内容
html5移动端源码下载 发布:2025-02-08 06:20:45 浏览:146
外网访问黑群晖 发布:2025-02-08 05:45:59 浏览:559
中央存储服务器公司地址 发布:2025-02-08 05:38:48 浏览:821
服务器如何查询表空间的文件路径 发布:2025-02-08 05:38:00 浏览:162
宏基4741g哪个配置好 发布:2025-02-08 05:37:56 浏览:810
混合料运输车的配置是如何计算的 发布:2025-02-08 05:31:35 浏览:293
android红包插件 发布:2025-02-08 05:31:34 浏览:365
ea服务器怎么连接 发布:2025-02-08 05:16:45 浏览:463
更加密更改 发布:2025-02-08 05:15:20 浏览:786
仓储资源配置都需要开展哪些任务 发布:2025-02-08 05:13:51 浏览:676