当前位置:首页 » 编程语言 » python多线程mysql

python多线程mysql

发布时间: 2023-07-12 07:14:22

‘壹’ 怎么用python链接和操作mysql数据库

你可以访问Python数据库接口及API查看详细的支持数据库列表。不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块。
DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多种多样的数据库接口程序提供一致的访问接口 。
Python的DB-API,为大多数的数据库实现了接口,使用它连接各数据库后,就可以用相同的方式操作各数据库。
Python DB-API使用流程:

引入 API 模块。
获取与数据库的连接。
执行SQL语句和存储过程。
关闭数据库连接。

什么是MySQLdb?

MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的。

如何安装MySQLdb?

为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL。复制以下代码,并执行:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

如果执行后的输出结果如下所示,意味着你没有安装 MySQLdb 模块:
Traceback (most recent call last):
File "test.py", line 3, in <mole>
import MySQLdb
ImportError: No mole named MySQLdb

安装MySQLdb,请访问 http://sourceforge.net/projects/mysql-python ,(Linux平台可以访问:https://pypi.python.org/pypi/MySQL-python)从这里可选择适合您的平台的安装包,分为预编译的二进制文件和源代码安装包。
如果您选择二进制文件发行版本的话,安装过程基本安装提示即可完成。如果从源代码进行安装的话,则需要切换到MySQLdb发行版本的顶级目录,并键入下列命令:
$ gunzip MySQL-python-1.2.2.tar.gz
$ tar -xvf MySQL-python-1.2.2.tar
$ cd MySQL-python-1.2.2
$ python setup.py build
$ python setup.py install

注意:请确保您有root权限来安装上述模块。

数据库连接

连接数据库前,请先确认以下事项:

您已经创建了数据库 TESTDB.
在TESTDB数据库中您已经创建了表 EMPLOYEE
EMPLOYEE表字段为 FIRST_NAME, LAST_NAME, AGE, SEX 和 INCOME。
连接数据库TESTDB使用的用户名为 "testuser" ,密码为 "test123",你可以可以自己设定或者直接使用root用户名及其密码,Mysql数据库用户授权请使用Grant命令。
在你的机子上已经安装了 Python MySQLdb 模块。
如果您对sql语句不熟悉,可以访问我们的 SQL基础教程

实例:

以下实例链接Mysql的TESTDB数据库:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# 使用execute方法执行SQL语句
cursor.execute("SELECT VERSION()")

# 使用 fetchone() 方法获取一条数据库。
data = cursor.fetchone()

print "Database version : %s " % data

# 关闭数据库连接
db.close()

执行以上脚本输出结果如下:
Database version : 5.0.45

创建数据库表

如果数据库连接存在我们可以使用execute()方法来为数据库创建表,如下所示创建表EMPLOYEE:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# 如果数据表已经存在使用 execute() 方法删除表。
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

# 创建数据表SQL语句
sql = """CREATE TABLE EMPLOYEE (
FIRST_NAME CHAR(20) NOT NULL,
LAST_NAME CHAR(20),
AGE INT,
SEX CHAR(1),
INCOME FLOAT )"""

cursor.execute(sql)

# 关闭数据库连接
db.close()

数据库插入操作

以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# SQL 插入语句
sql = """INSERT INTO EMPLOYEE(FIRST_NAME,
LAST_NAME, AGE, SEX, INCOME)
VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
# 执行sql语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# Rollback in case there is any error
db.rollback()

# 关闭数据库连接
db.close()

以上例子也可以写成如下形式:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# SQL 插入语句
sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \
LAST_NAME, AGE, SEX, INCOME) \
VALUES ('%s', '%s', '%d', '%c', '%d' )" % \
('Mac', 'Mohan', 20, 'M', 2000)
try:
# 执行sql语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# 发生错误时回滚
db.rollback()

# 关闭数据库连接
db.close()

实例:

以下代码使用变量向SQL语句中传递参数:
..................................
user_id = "test123"
password = "password"

con.execute('insert into Login values("%s", "%s")' % \
(user_id, password))
..................................

数据库查询操作

Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。

fetchone(): 该方法获取下一个查询结果集。结果集是一个对象
fetchall():接收全部的返回结果行.
rowcount: 这是一个只读属性,并返回执行execute()方法后影响的行数。

实例:

查询EMPLOYEE表中salary(工资)字段大于1000的所有数据:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# SQL 查询语句
sql = "SELECT * FROM EMPLOYEE \
WHERE INCOME > '%d'" % (1000)
try:
# 执行SQL语句
cursor.execute(sql)
# 获取所有记录列表
results = cursor.fetchall()
for row in results:
fname = row[0]
lname = row[1]
age = row[2]
sex = row[3]
income = row[4]
# 打印结果
print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \
(fname, lname, age, sex, income )
except:
print "Error: unable to fecth data"

# 关闭数据库连接
db.close()

以上脚本执行结果如下:
fname=Mac, lname=Mohan, age=20, sex=M, income=2000

数据库更新操作

更新操作用于更新数据表的的数据,以下实例将 TESTDB表中的 SEX 字段全部修改为 'M',AGE 字段递增1:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# SQL 更新语句
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1
WHERE SEX = '%c'" % ('M')
try:
# 执行SQL语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# 发生错误时回滚
db.rollback()

# 关闭数据库连接
db.close()

删除操作

删除操作用于删除数据表中的数据,以下实例演示了删除数据表 EMPLOYEE 中 AGE 大于 20 的所有数据:
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标
cursor = db.cursor()

# SQL 删除语句
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
# 执行SQL语句
cursor.execute(sql)
# 提交修改
db.commit()
except:
# 发生错误时回滚
db.rollback()

# 关闭连接
db.close()

执行事务

事务机制可以确保数据一致性。

事务应该具有4个属性:原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。

原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。
隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。
持久性(rability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。

Python DB API 2.0 的事务提供了两个方法 commit 或 rollback。

‘贰’ python 访问 Mysql 数据库,是多线程好还是多进程好

MySQL(发音为"myesscueel",不是"mysequel")是一种开放源代码的关系型数据库管理系统(RDBMS),MySQL数据库系统使用最常用的数据库管理语言--结构化查询语言(SQL)进行数据库管理。由于MySQL是开放源代码的,因此任何人都可以在GeneralPublicLicense的许可下下载并根据个性化的需要对其进行修改。MySQL因为其速度、可靠性和适应性而备受关注。大多数人都认为在不需要事务化处理的情况下,MySQL是管理内容最好的选择。MySQL关系型数据库于1998年1月发行第一个版本。它使用系统核心提供的多线程机制提供完全的多线程运行模式,提供了面向C、C++、Eiffel、Java、Perl、PHP、Python以及Tcl等编程语言的编程接口(APIs),支持多种字段类型并且提供了完整的操作符支持查询中的SELECT和WHERE操作。MySQL开发组计划于2001年中期公布MySQL4.0版本。在这个版本中将有以下新的特性被提供:新的表定义文件格式、高性能的数据复制功能、更加强大的全文搜索功能。在此之后,MySQL开发着希望提供安全的数据复制机制、在BeOS操作系统上的MySQL实现以及对延时关键字的定期刷新选项。随着时间的推进,MySQL将对ANSI92/ANSI99标准完全兼容。MsSql---->MicroSoftSqlServer,需要money,而且很多呢。(大型项目用,大型网站用)MySql---->免费的。速度快。可以用于小型项目。mysql数据库和oracle的区别和选择:LAMP大会的时候我跟Yahoo的一个技术高管聊的时候,我问他Yahoo在选择MySQL还是Oracle的时候是怎么考虑,他的答案令我非常惊讶。他说大部分的时候我们是会用MySQL的,因为它的性能已经达到我们的要求。但是什么时候我们会选用Oracle呢,就是当我们需要存储收费用户的数据的时候。我就问为什么,难道Oracle比MySQL稳定吗?他说,这个倒没有特别考虑。关键是如果使用Oracle的话,当出现问题的时候我们可以找到负责人,Oracle会负责事故的处理,但是如果用MySQL的话,我们找谁去?

‘叁’ MySQL-python连接MySQL数据库问题,总是抛异常。

不要刚开始学多线程编程就这样玩。connection 和 cursor 都不是线程安全的。

如果测试环境用多个线程,每个线程要在线程里面获取自己的 connection,然后从这个connection 获取 cursor.

如果生产环境用多个线程,建议使用线程安全的连接池。

‘肆’ python sqlalchemy 多线程怎么写

首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同。
因为我是搭配 MySQL InnoDB 使用,所以使用其他数据库的也不能完全照搬本文。
接着就从安装开始介绍吧,以 Debian/Ubuntu 为例(请确保有管理员权限):
1.MySQL

复制代码代码如下:
apt-get install mysql-server
apt-get install mysql-client
apt-get install libmysqlclient15-dev

2.python-mysqldb

复制代码代码如下:
apt-get install python-mysqldb

3.easy_install

python ez_setup.py
4.MySQL-Python

复制代码代码如下:
easy_install MySQL-Python

5.SQLAlchemy

复制代码代码如下:
easy_install SQLAlchemy
如果是用其他操作系统,遇到问题就 Google 一下吧。我是在 Mac OS X 上开发的,途中也遇到些问题,不过当时没记下来……
值得一提的是我用了 MySQL-Python 来连 MySQL,因为不支持异步调用,所以和 Tornado 不是很搭。不过性能其实很好,因此以后再去研究下其他方案吧……
装好后就可以开始使用了:

复制代码代码如下:
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

DB_CONNECT_STRING = 'mysql+mysqldb://root:123@localhost/ooxx?charset=utf8'
engine = create_engine(DB_CONNECT_STRING, echo=True)
DB_Session = sessionmaker(bind=engine)
session = DB_Session()

这里的 DB_CONNECT_STRING 就是连接数据库的路径。“mysql+mysqldb”指定了使用 MySQL-Python 来连接,“root”和“123”分别是用户名和密码,“localhost”是数据库的域名,“ooxx”是使用的数据库名(可省略),“charset”指定了连接时使用的字符集(可省略)。
create_engine() 会返回一个数据库引擎,echo 参数为 True 时,会显示每条执行的 SQL 语句,生产环境下可关闭。
sessionmaker() 会生成一个数据库会话类。这个类的实例可以当成一个数据库连接,它同时还记录了一些查询的数据,并决定什么时候执行 SQL 语句。由于 SQLAlchemy 自己维护了一个数据库连接池(默认 5 个连接),因此初始化一个会话的开销并不大。对 Tornado 而言,可以在 BaseHandler 的 initialize() 里初始化:

复制代码代码如下:

class BaseHandler(tornado.web.RequestHandler):
def initialize(self):
self.session = models.DB_Session()
def on_finish(self):
self.session.close()

对其他 Web 服务器来说,可以使用 sqlalchemy.orm.scoped_session,它能保证每个线程获得的 session 对象都是唯一的。不过 Tornado 本身就是单线程的,如果使用了异步方式,就可能会出现问题,因此我并没使用它。
拿到 session 后,就可以执行 SQL 了:

复制代码代码如下:
session.execute('create database abc')
print session.execute('show databases').fetchall()
session.execute('use abc')
# 建 user 表的过程略
print session.execute('select * from user where id = 1').first()
print session.execute('select * from user where id = :id', {'id': 1}).first()

不过这和直接使用 MySQL-Python 没啥区别,所以就不介绍了;我还是喜欢 ORM 的方式,这也是我采用 SQLAlchemy 的唯一原因。
于是来定义一个表:

复制代码代码如下:
from sqlalchemy import Column
from sqlalchemy.types import CHAR, Integer, String
from sqlalchemy.ext.declarative import declarative_base

BaseModel = declarative_base()
def init_db():
BaseModel.metadata.create_all(engine)
def drop_db():
BaseModel.metadata.drop_all(engine)

class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
name = Column(CHAR(30)) # or Column(String(30))
init_db()
declarative_base() 创建了一个 BaseModel 类,这个类的子类可以自动与一个表关联。
以 User 类为例,它的 __tablename__ 属性就是数据库中该表的名称,它有 id 和 name 这两个字段,分别为整型和 30 个定长字符。Column 还有一些其他的参数,我就不解释了。
最后,BaseModel.metadata.create_all(engine) 会找到 BaseModel 的所有子类,并在数据库中建立这些表;drop_all() 则是删除这些表。
接着就开始使用这个表吧:

复制代码代码如下:
from sqlalchemy import func, or_, not_

user = User(name='a')
session.add(user)
user = User(name='b')
session.add(user)
user = User(name='a')
session.add(user)
user = User()
session.add(user)
session.commit()
query = session.query(User)
print query # 显示SQL 语句
print query.statement # 同上
for user in query: # 遍历时查询
print user.name
print query.all() # 返回的是一个类似列表的对象
print query.first().name # 记录不存在时,first() 会返回 None
# print query.one().name # 不存在,或有多行记录时会抛出异常
print query.filter(User.id == 2).first().name
print query.get(2).name # 以主键获取,等效于上句
print query.filter('id = 2').first().name # 支持字符串
query2 = session.query(User.name)
print query2.all() # 每行是个元组
print query2.limit(1).all() # 最多返回 1 条记录
print query2.offset(1).all() # 从第 2 条记录开始返回
print query2.order_by(User.name).all()
print query2.order_by('name').all()
print query2.order_by(User.name.desc()).all()
print query2.order_by('name desc').all()
print session.query(User.id).order_by(User.name.desc(), User.id).all()
print query2.filter(User.id == 1).scalar() # 如果有记录,返回第一条记录的第一个元素
print session.query('id').select_from(User).filter('id = 1').scalar()
print query2.filter(User.id > 1, User.name != 'a').scalar() # and
query3 = query2.filter(User.id > 1) # 多次拼接的 filter 也是 and
query3 = query3.filter(User.name != 'a')
print query3.scalar()
print query2.filter(or_(User.id == 1, User.id == 2)).all() # or
print query2.filter(User.id.in_((1, 2))).all() # in
query4 = session.query(User.id)
print query4.filter(User.name == None).scalar()
print query4.filter('name is null').scalar()
print query4.filter(not_(User.name == None)).all() # not
print query4.filter(User.name != None).all()
print query4.count()
print session.query(func.count('*')).select_from(User).scalar()
print session.query(func.count('1')).select_from(User).scalar()
print session.query(func.count(User.id)).scalar()
print session.query(func.count('*')).filter(User.id > 0).scalar() # filter() 中包含 User,因此不需要指定表
print session.query(func.count('*')).filter(User.name == 'a').limit(1).scalar() == 1 # 可以用 limit() 限制 count() 的返回数
print session.query(func.sum(User.id)).scalar()
print session.query(func.now()).scalar() # func 后可以跟任意函数名,只要该数据库支持
print session.query(func.current_timestamp()).scalar()
print session.query(func.md5(User.name)).filter(User.id == 1).scalar()
query.filter(User.id == 1).update({User.name: 'c'})
user = query.get(1)
print user.name
user.name = 'd'
session.flush() # 写数据库,但并不提交
print query.get(1).name
session.delete(user)
session.flush()
print query.get(1)
session.rollback()
print query.get(1).name
query.filter(User.id == 1).delete()
session.commit()
print query.get(1)

增删改查都涉及到了,自己看看输出的 SQL 语句就知道了,于是基础知识就介绍到此了。

下面开始介绍一些进阶的知识。
如何批量插入大批数据?

可以使用非 ORM 的方式:

复制代码代码如下:
session.execute(
User.__table__.insert(),
[{'name': `randint(1, 100)`,'age': randint(1, 100)} for i in xrange(10000)]
)
session.commit()

上面我批量插入了 10000 条记录,半秒内就执行完了;而 ORM 方式会花掉很长时间。
如何让执行的 SQL 语句增加前缀?

使用 query 对象的 prefix_with() 方法:

复制代码代码如下:
session.query(User.name).prefix_with('HIGH_PRIORITY').all()
session.execute(User.__table__.insert().prefix_with('IGNORE'), {'id': 1, 'name': '1'})
如何替换一个已有主键的记录?

使用 session.merge() 方法替代 session.add(),其实就是 SELECT + UPDATE:

复制代码代码如下:
user = User(id=1, name='ooxx')
session.merge(user)
session.commit()

或者使用 MySQL 的 INSERT … ON DUPLICATE KEY UPDATE,需要用到 @compiles 装饰器,有点难懂,自己搜索看吧:《SQLAlchemy ON DUPLICATE KEY UPDATE》 和 sqlalchemy_mysql_ext。
如何使用无符号整数?

可以使用 MySQL 的方言:

复制代码代码如下:
from sqlalchemy.dialects.mysql import INTEGER
id = Column(INTEGER(unsigned=True), primary_key=True)
模型的属性名需要和表的字段名不一样怎么办?

开发时遇到过一个奇怪的需求,有个其他系统的表里包含了一个“from”字段,这在 Python 里是关键字,于是只能这样处理了:

复制代码代码如下:
from_ = Column('from', CHAR(10))
如何获取字段的长度?

Column 会生成一个很复杂的对象,想获取长度比较麻烦,这里以 User.name 为例:

复制代码代码如下:
User.name.property.columns[0].type.length
如何指定使用 InnoDB,以及使用 UTF-8 编码?

最简单的方式就是修改数据库的默认配置。如果非要在代码里指定的话,可以这样:

复制代码代码如下:
class User(BaseModel):
__table_args__ = {
'mysql_engine': 'InnoDB',
'mysql_charset': 'utf8'
}

MySQL 5.5 开始支持存储 4 字节的 UTF-8 编码的字符了,iOS 里自带的 emoji(如 �� 字符)就属于这种。
如果是对表来设置的话,可以把上面代码中的 utf8 改成 utf8mb4,DB_CONNECT_STRING 里的 charset 也这样更改。
如果对库或字段来设置,则还是自己写 SQL 语句比较方便,具体细节可参考《How to support full Unicode in MySQL databases》。
不建议全用 utf8mb4 代替 utf8,因为前者更慢,索引会占用更多空间。
如何设置外键约束?

复制代码代码如下:
from random import randint
from sqlalchemy import ForeignKey

class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
age = Column(Integer)

class Friendship(BaseModel):
__tablename__ = 'friendship'
id = Column(Integer, primary_key=True)
user_id1 = Column(Integer, ForeignKey('user.id'))
user_id2 = Column(Integer, ForeignKey('user.id'))

for i in xrange(100):
session.add(User(age=randint(1, 100)))
session.flush() # 或 session.commit(),执行完后,user 对象的 id 属性才可以访问(因为 id 是自增的)
for i in xrange(100):
session.add(Friendship(user_id1=randint(1, 100), user_id2=randint(1, 100)))
session.commit()
session.query(User).filter(User.age < 50).delete()
执行这段代码时,你应该会遇到一个错误:

复制代码代码如下:
sqlalchemy.exc.IntegrityError: (IntegrityError) (1451, 'Cannot delete or update a parent row: a foreign key constraint fails (`ooxx`.`friendship`, CONSTRAINT `friendship_ibfk_1` FOREIGN KEY (`user_id1`) REFERENCES `user` (`id`))') 'DELETE FROM user WHERE user.age < %s' (50,)

原因是删除 user 表的数据,可能会导致 friendship 的外键不指向一个真实存在的记录。在默认情况下,MySQL 会拒绝这种操作,也就是 RESTRICT。InnoDB 还允许指定 ON DELETE 为 CASCADE 和 SET NULL,前者会删除 friendship 中无效的记录,后者会将这些记录的外键设为 NULL。
除了删除,还有可能更改主键,这也会导致 friendship 的外键失效。于是相应的就有 ON UPDATE 了。其中 CASCADE 变成了更新相应的外键,而不是删除。
而在 SQLAlchemy 中是这样处理的:

复制代码代码如下:
class Friendship(BaseModel):
__tablename__ = 'friendship'
id = Column(Integer, primary_key=True)
user_id1 = Column(Integer, ForeignKey('user.id', ondelete='CASCADE', onupdate='CASCADE'))
user_id2 = Column(Integer, ForeignKey('user.id', ondelete='CASCADE', onupdate='CASCADE'))
如何连接表?

复制代码代码如下:
from sqlalchemy import distinct
from sqlalchemy.orm import aliased

Friend = aliased(User, name='Friend')
print session.query(User.id).join(Friendship, User.id == Friendship.user_id1).all() # 所有有朋友的用户
print session.query(distinct(User.id)).join(Friendship, User.id == Friendship.user_id1).all() # 所有有朋友的用户(去掉重复的)
print session.query(User.id).join(Friendship, User.id == Friendship.user_id1).distinct().all() # 同上
print session.query(Friendship.user_id2).join(User, User.id == Friendship.user_id1).order_by(Friendship.user_id2).distinct().all() # 所有被别人当成朋友的用户
print session.query(Friendship.user_id2).select_from(User).join(Friendship, User.id == Friendship.user_id1).order_by(Friendship.user_id2).distinct().all() # 同上,join 的方向相反,但因为不是 STRAIGHT_JOIN,所以 MySQL 可以自己选择顺序
print session.query(User.id, Friendship.user_id2).join(Friendship, User.id == Friendship.user_id1).all() # 用户及其朋友
print session.query(User.id, Friendship.user_id2).join(Friendship, User.id == Friendship.user_id1).filter(User.id < 10).all() # id 小于 10 的用户及其朋友
print session.query(User.id, Friend.id).join(Friendship, User.id == Friendship.user_id1).join(Friend, Friend.id == Friendship.user_id2).all() # 两次 join,由于使用到相同的表,因此需要别名
print session.query(User.id, Friendship.user_id2).outerjoin(Friendship, User.id

‘伍’ python3.4怎么连接mysql pymysql连接mysql数据库

1.pymysql安装
pymysql就是作为python3环境下mysqldb的替代物,进入命令行,使用pip安装pymysql

1

pip install pymysql3

2.pymysql使用
如果想使用mysqldb的方式,那么直接在py文件的开头加入如下两行代码即可。

1
2
3
4

#引入pymysql
import pymysql
#当成是mysqldb一样使用,当然也可以不写这句,那就按照pymysql的方式
pymysql.install_as_MySQLdb()

热点内容
java位与运算 发布:2025-02-08 18:48:22 浏览:215
sift算法详解 发布:2025-02-08 18:35:23 浏览:579
linux标准错误的是 发布:2025-02-08 18:32:07 浏览:915
蛮多小说怎么缓存书架的小说 发布:2025-02-08 18:30:16 浏览:888
光遇花开脚本封号吗 发布:2025-02-08 18:23:15 浏览:534
怎么弄ld帐号和密码 发布:2025-02-08 18:11:42 浏览:628
新逍客20发动机压缩比 发布:2025-02-08 17:58:10 浏览:115
qq号和密码我都知道为什么登不上 发布:2025-02-08 17:52:21 浏览:872
宝塔服务器ip进不去 发布:2025-02-08 17:52:18 浏览:382
担保中介源码 发布:2025-02-08 17:14:37 浏览:413