c语言lock
① 【c语言】编写ATM机程序
帮我用C语言编写一个ATM取款程序要求代码在300行以上
作为一个二十一世纪的大学生,要养成自己动手的习惯!不懂就去图书馆翻阅资料!虽然网上现在很
② 在linux中用C语言实现死锁
让我来告诉你答案!设置状态变量lock=0,在占用资源的函数中,设置lock=1;并在处理结束后设lock=0.
比如:
boollock=0;
intscan()
{
while(lock!=0);//循环检测,直到资源释放才执行下面的语句
lock=1;//锁定资源
...//具体的执行扫描的语句
lock=1;//释放资源
return0;
}
这个方法容易实现,但是占用CPU,假定其他线程正在占用扫描仪,那么这个线程就会在自己的时间片内不停的执行while语句直到对方释放扫描仪。由此造成了浪费。
现在流行的做法是通过中断信号来做,那是一本书的内容,建议看linux内核编程方面的书。
③ 用单片机C语言控制6位密码锁。要求有一个清除键和确认键,密码输错了会有报警音。请高手帮助了
我找到了一个,来自《51单片机C语言应用技术开发大全》
SCH图正在绘制中。。。
#include <REGX51.H>//51单片机的头文件
typedef unsigned char uchar; //类型定义,定义uchar类型
typedef unsigned int uint; //类型定义,定义uint 类型
//键盘子程序相关说明。
#define BLANKCHAR 10 //定义空白常量
#define PCHAR 11 //定义字符P常量
#define OPENCHAR 12 //定义开锁字符常量
#define ALARMCHAR 13 //定义字符A常量
#define LINECHAR 14 //定义字符-常量
#define BACKKEY 0X0D //定义退格键常量
#define ENTERKEY 0X0F //定义确认键常量
#define LOCKKEY 0X0E //定义闭锁键常量
#define NO_KEY 20 //定义无按键返回值
#define KEYPORT P2 //定义键盘端口
//Delay1Ms
void Delay1Ms()
{
uint i;
for (i=0;i<1000;i++);
}
//定义按键扫描码表 按键扫描时,4位列线和4位行线组成字节数据表
uchar code KEYCODE[]=
{0XEE,0XED,0XEB,0XE7,
0XDE,0XDD,0XDB,0XD7,
0XBE,0XBD,0XBB,0XB7,
0X7E,0X7D,0X7B,0X77};
uchar KeyPre; //保存上次扫描按键的键值
uchar KeyUp;
//用于控制按键去抖动操作。1:扫描时去抖动 2:等待释放 3:释放时去抖动。
#define LEDPORT P0 //定义显示器段码输出端口
#define LEDCON P1 //定义显示器位控制端口
uchar code SEGCODE[]=
{0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90,// 0~9的共阳极代码
0xff,//不显示的共阳极段码
0X8C,//字符P的共阳极段码
0X8F,//┝的共阳极段码
0X88,//字符A的共阳极段码
0XBF,//字符-的共阳极段码
};
//定义LED位码控制码
uchar code BITCODE[]={0Xfe,0Xfd,0Xfb,0Xf7,0Xef,0Xdf,0Xbf,0X7f};
uchar DispBuf[6]; //保存显示的字符
bit DispNormal; //控制显示时,是正常显示还是闪烁显示。
uchar DispCnt; //控制闪烁显示时的频率。
#define SHORT_TIME 10 //蜂鸣器响200ms
#define LONG_TIME 100 //蜂鸣器响2s
#define LONGER_TIME 9000 //蜂鸣器响3 minutes
sbit ALARMCON=P3^4; //定义报警控制引脚
bit AlarmEnable; //是否报警或声音提示
uint AlarmTime; //控制报警时间长度
sbit LOCKCON=P3^3; //定义电子锁控制引脚
uchar code PassWord[]={1,2,3,4,5}; //定义初时密码表
uchar PassInBuf[6]; //保存输入的密码字符
uchar PassPosi; //用户输入密码字符存放在PassInBuf[]的位置。
bit TimerBit; //20ms定时时间到
uchar SysMode; //系统所处模式 0:输入密码模式 1:报警模式 2:开锁模式
uchar ErrorCnt; //用户连续输入密码出错次数。
/*
入口参数:
FillChar:写入缓冲区的字符
出口参数:无
*/
void Fill_Buf(uchar FillChar)
{
uchar i;
for(i=0;i<6;i++)
{
DispBuf[i]=FillChar;//用字符FillChar填充DispBuf[i]
PassInBuf[i]=FillChar; //用字符FillChar填充PassInBuf [i]
}
}
void Fill_Buf_P()
{
Fill_Buf(BLANKCHAR); // DispBuf[1..5]= ' '
DispBuf[0]=PCHAR;// DispBuf[0]='P'
}
void Fill_Buf_O()
{
Fill_Buf(BLANKCHAR); // DispBuf[1..5]= ' '
DispBuf[0]=OPENCHAR; // DispBuf[0]='┝'
}
void Fill_Buf_A()
{
Fill_Buf(LINECHAR); // DispBuf[1..5]= ' -----'
DispBuf[0]=ALARMCHAR; // DispBuf[0]='A'
}
/*
入口参数:
DispPosi:要显示数据的LED号。
DispChar:要显示的内容。
出口参数:无
*/
void Disp_Led_Sin(uchar DispChar,uchar DispPosi)
{
LEDPORT=SEGCODE[DispChar];//输出显示段码
LEDCON&=BITCODE[DispPosi];//输出显示位码
Delay1Ms(); //延时1MS
LEDCON|=0X3F;//关闭显示器
}
/*(2)关闭显示函数Disp_Led_OFF。
函数Disp_Led_OFF在显示器上显示空白字符,主要用在闪烁显示。函数通过6次调用Disp_Led_Sin实现所需功能。代码如下:*/
void Disp_Led_OFF()
{
uchar i;
LEDCON|=0X3F;// 关闭显示器
for(i=0;i<6;i++)
{
Disp_Led_Sin(BLANKCHAR,i);//逐个显示空白字符
}
}
void Disp_Led_All()
{
uchar i;
LEDCON|=0X3F; // 关闭显示器
for(i=0;i<6;i++)
{
Disp_Led_Sin(DispBuf[i],i); //显示DispBuf[]中的数值
}
}
void Disp_LED()
{
DispCnt++;
DispCnt%=10;
if(DispCnt==0)
{
DispNormal=~DispNormal;//200ms将闪烁显示控制位取反
}
if(SysMode==1)
{//报警模式,闪烁显示
if(!DispNormal)
{
Disp_Led_OFF();//显示空白字符
return;
}
}
Disp_Led_All();//显示DispBuf[]中的数值
}
/*
入口参数:
stime:蜂鸣器鸣叫时间。
出口参数:无
*/
void Sys_Speaker(uint stime)
{
AlarmEnable=1;//允许报警
AlarmTime=stime;//报警时间长短
}
void Sys_Alarm()
{
if(AlarmEnable==1)
{//允许报警
ALARMCON=0;//报警
AlarmTime--;
if(AlarmTime==0)
{//停止报警时间到
AlarmEnable=0;
ALARMCON=1;//禁止报警
if(SysMode==1)
{//报警发生在模式1时,要返回模式0
SysMode=0;
Fill_Buf_P();//显示P
}
}
}
}
/*
入口参数:无
出口参数:按键值或无按键
*/
uchar Find_Key()
{
uchar KeyTemp,i;
KEYPORT=0xf0;//行线输出0,列线输出全1
KeyTemp=KEYPORT;//读按键端口值
if(KeyTemp==0xf0)
return NO_KEY;//无键按下,返回
KEYPORT=KeyTemp|0x0f;//列线输出,行线输入
KeyTemp=KEYPORT;//读取按键端口值
for(i=0;i<16;i++)
{
if(KeyTemp==KEYCODE[i])//根据按键端口扫描值,查找按键值
return i;//返回按键值
}
return NO_KEY;
}
/*
入口参数:无
出口参数:按键值或无按键
*/
uchar Scan_Key()
{
uchar KeyTemp;
KeyTemp=Find_Key();//扫描键盘,获得按键值
if(KeyTemp==NO_KEY)
{
if(KeyUp<2)
{//无按键按下,返回
KeyUp=0;
return NO_KEY;
}
if(KeyUp==2)
{//按键要释放,延时去抖动
KeyUp=3;
return NO_KEY;
}
if(KeyUp==3)
{//按键释放,返回键值
KeyUp=0;
return KeyPre;
}
}
else
{
if(KeyUp==0)
{//有键按下,保存键值
KeyUp=1;
KeyPre=KeyTemp;
}
else if(KeyUp==1)
{//去抖动后,再次测到有按键按下
if( KeyPre==KeyTemp)
KeyUp=2;
else
KeyPre=KeyTemp;
} else if(KeyUp==3)
{//等待按键释放
KeyUp=2;
}
}
return NO_KEY;
}
/*
入口参数:
Key:按键值
出口参数:无
*/
void Key_Process(uchar Key)
{
uchar i;
if(Key==NO_KEY)
return ;//无按键,不处理
switch(SysMode)
{
case 0://输入密码
switch(Key)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
DispBuf[PassPosi]=LINECHAR;//显示'-'
PassInBuf[PassPosi]=Key;//保存用户输入的密码
if(PassPosi<5)
PassPosi++;//调整密码输入位置
Sys_Speaker(SHORT_TIME);//发按键提示音
break;
case BACKKEY://退格键
DispBuf[PassPosi]=BLANKCHAR;//显示' '
PassInBuf[PassPosi]=BLANKCHAR;//清除当前位置的密码
if(PassPosi>1)
PassPosi--;//调整显示位置
Sys_Speaker(SHORT_TIME);//发按键提示音
break;
case ENTERKEY://确定按键
for(i=0;i<5;i++)
{//比较用户输入密码与系统预设密码是否一致
if(PassInBuf[i+1]!=PassWord[i])
break;
}
if(i>=5)
{//输入密码正确
Fill_Buf_O();//显示开锁状态
PassPosi=1;
LOCKCON=1;//开锁
ErrorCnt=0;
Sys_Speaker(LONG_TIME);//发长提示音
SysMode=2;//转模式2
}
else
{
ErrorCnt++;//出错次数加一
if(ErrorCnt>2)
{//次数超过3次
ErrorCnt=0;
Fill_Buf_A();//显示报警状态
PassPosi=1;
Sys_Speaker(LONGER_TIME);//发报警音
SysMode=1;
}
else
{//出错次数少于3次,用户重新输入
Fill_Buf_P();
PassPosi=1;
Sys_Speaker(LONG_TIME);
}
}
break;
case LOCKKEY://闭锁键
Fill_Buf_P();//显示P
PassPosi=1;
Sys_Speaker(SHORT_TIME);
break;
}
break;
case 2://开锁状态
if(Key==LOCKKEY)
{//用户按动闭锁按键
Fill_Buf_P();
SysMode=0;
LOCKCON=0;//闭锁
Sys_Speaker(SHORT_TIME);
}
break;
}
}
void Ini_Timer0()
{
TMOD&=0XF0;
TMOD|=0X01;// 初始化T0,模式1
TR0=0;
TH0=(65536-20000)/256;//T0 赋计数初值
TL0=(65536-20000)%256;
TR0=1;//启动T0
ET0=1;//允许T0中断
}
void Timer0() interrupt 1
{
TR0=0;
TH0=(65536-20000)/256; //T0 赋计数初值
TL0=(65536-20000)%256;
TR0=1;
TimerBit=1;//定时时间到
}
void Ini_System()
{
PassPosi=1;
LOCKCON=0;//闭锁
Ini_Timer0();//初始化T0
Fill_Buf_P();
EA=1;//允许系统中断
}
void main()
{
uchar KeyTemp;
Ini_System();
while(1)
{
if (TimerBit==1)
{//定时时间到
Disp_LED();//刷新显示器
Sys_Alarm();//报警处理
KeyTemp=Scan_Key();//扫描按键
Key_Process(KeyTemp);//按键处理
TimerBit=0;
}
}
}
④ 用c语言写个 socket tcp 的
#include <winsock2.h>
#include <stdio.h>
#include <pthread.h>
#pragma comment(lib,"ws2_32.lib")
typedef struct{
SOCKET accpt;
int lock;
}Arg;
void *transfer(void *arg)
{
Arg * info = (Arg *)arg;
SOCKET clientSock;
char recvbuf[102];
char sendBuf[] = "10";
int ret;
memcpy(&clientSock,(void*)&info->accpt,sizeof(clientSock));
info->lock =1;
while (TRUE)
{
ret = send(clientSock,sendBuf,2,0);
if (ret == -1)
{
break;
}
ret = recv(clientSock,recvbuf,102,0);
printf("%s ",recvbuf);
}
return (void *)0;
}
void* timer(void *arg)
{
time_t last = time(NULL);
time_t now;
int i = 20;
while(i--)
{
now = time(NULL);
if(now - last == 1)
{
printf("1s past! ");
last = now;
}
Sleep(500);
}
printf("timer exit. ");
return (void *)0;
}
int main(void) {
WSADATA wsaData;
SOCKET ListenSocket;
SOCKADDR_IN service,client;
int len = sizeof(client);
Arg argument;
pthread_t tid;
char sendBuf[] = "ID=2;WHAT=host";
int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
if (iResult != NO_ERROR) {
printf("Error at WSAStartup() ");
return 1;
}
ListenSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (ListenSocket == INVALID_SOCKET) {
printf("Error at socket(): %ld ", WSAGetLastError());
WSACleanup();
return 1;
}
service.sin_family = AF_INET;
service.sin_addr.s_addr = inet_addr("127.0.0.1");
service.sin_port = htons(27115);
if (bind( ListenSocket,
(SOCKADDR*) &service,
sizeof(service)) == SOCKET_ERROR) {
printf("bind() failed. ");
closesocket(ListenSocket);
WSACleanup();
return 1;
}
if (listen( ListenSocket, 1 ) == SOCKET_ERROR) {
printf("Error listening on socket. ");
closesocket(ListenSocket);
WSACleanup();
return 1;
}
argument.lock = 1;
printf("Waiting for client to connect... ");
pthread_create(&tid,NULL,timer,NULL);
while(TRUE){
argument.accpt = accept( ListenSocket, (SOCKADDR*)&client, &len );
if (argument.accpt == INVALID_SOCKET) {
printf("accept failed: %d ", WSAGetLastError());
closesocket(ListenSocket);
WSACleanup();
return 1;
} else {
printf("accept%s:%d ",inet_ntoa(client.sin_addr),client.sin_port);
while (!argument.lock);
argument.lock = 0;
// sendto(argument.accpt,sendBuf,sizeof(sendBuf),0,(SOCKADDR*)&client,len);
pthread_create(&tid,NULL,transfer,&argument);
//send(AcceptSocket,sendBuf,sizeof(sendBuf),0);
}
}
// No longer need server socket
closesocket(ListenSocket);
WSACleanup();
return 0;
}
发送数据格式按需求。可以发送字符串,也可以发送结构体。如果发送结构体的话,要注意序列化和反序列化。程序例子是服务器对每个客户端的connect动作起一个线程去交互。还有一个线程是定时器。
⑤ C语言缓冲区在哪里
缓冲区具体在哪里是与操作系统、编译器相关的
以VC++为例。察看getchar的源代码(src\fgetchar.c),有:
int __cdecl _fgetchar (void){
return(getc(stdin));
}
#undef getchar
int __cdecl getchar (void){
return _fgetchar();
}
可见getchar()相当于getc(stdin)
继续察看getc(src\fgetc.c),有一段(为便于阅读,有删减):
int __cdecl getc (FILE *stream){
int retval;
_ASSERTE(stream != NULL);
_lock_str(stream);
__try {
retval = _getc_lk(stream);
}
__finally {
_unlock_str(stream);
}
return(retval);
}
这段代码里_lock_str其实是通过Win32 API提供的临街区来锁住文件
接收用户输入发生在_getc_lk,_getc_lk宏调用_filbuf。_filbuf在_filbuf.c中可以查看,这段代码比较长,就不贴出来了
_filbuf主要是调用了_read(_fileno(stream), stream->_base, stream->_bufsiz)
而_read最终则是调用了Win32API ReadFile,以下是用WinDbg输出的getchar的调用栈:
# ChildEBP RetAddr
00 0012fe6c 0040a4e7 kernel32!ReadFile
01 0012fea8 0040a3b9 TestStruct!_read_lk+0x107 [read.c @ 146]
02 0012fec0 00403140 TestStruct!_read+0x69 [read.c @ 75]
03 0012fee8 00401290 TestStruct!_filbuf+0xd0 [_filbuf.c @ 127]
04 0012ff08 004012cc TestStruct!fgetc+0x80 [fgetc.c @ 44]
05 0012ff14 0040103d TestStruct!getc+0xc [fgetc.c @ 56]
06 0012ff20 00401058 TestStruct!_fgetchar+0xd [fgetchar.c @ 37]
07 0012ff28 0040101e TestStruct!getchar+0x8 [fgetchar.c @ 47]
08 0012ff80 0040115c TestStruct!main+0xe [d:\my programs\teststruct\ts.cpp @ 4]
09 0012ffc0 7c816fe7 TestStruct!mainCRTStartup+0xfc [crt0.c @ 206]
0a 0012fff0 00000000 kernel32!BaseProcessStart+0x23
可见,getchar最终调用了ReadFile。关于ReadFile的原理以及缓冲区在哪里,请你再提一个问我再回答