当前位置:首页 » 编程语言 » jieba分词python

jieba分词python

发布时间: 2023-07-01 09:11:13

❶ 在python 环境下,使用结巴分词,自动导入文本,分词,提取关键词.脚本 大侠给个

#-*-coding:UTF-8-*-

importjieba

__author__='lpe234'


seg_list=jieba.cut("我来到北京天安门",cut_all=True)
print','.join(seg_list)
...
Loadingmodelfromcache/var/folders/sv//T/jieba.cache
我,来到,北京,天安,天安门
Loadingmodelcost0.433seconds.
.

Processfinishedwithexitcode0

❷ jieba分词详解

“结巴”分词是一个Python 中文分词组件,参见 https://github.com/fxsjy/jieba
可以对中文文本进行 分词、词性标注、关键词抽取 等功能,并且支持自定义词典。

本文包括以下内容:
1、jieba分词包的 安装
2、jieba分词的 使用教程
3、jieba分词的 工作原理与工作流程
4、jieba分词所涉及到的 HMM、TextRank、TF-IDF等算法介绍

可以直接使用pip来进行安装:
sudo pip install jieba
或者
sudo pip3 install jieba

关键词抽取有两种算法,基于TF-IDF和基于TextRank:

jieba分词有三种不同的分词模式: 精确模式、全模式和搜索引擎模式

对应的,函数前加l即是对应得到list结果的函数:

精确模式是最常用的分词方法,全模式会将句子中所有可能的词都列举出来,搜索引擎模式则适用于搜索引擎使用。具体的差别可在下一节工作流程的分析中详述。

在上述每个函数中,都有名为HMM的参数。这一项表示是否在分词过程中利用HMM进行新词发现。关于HMM,本文附录中将简述相关知识。

另外分词支持自定义字典,词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。
具体使用方法为:

关键词抽取的两个函数的完整参数为:

可以通过

来打开或关闭并行分词功能。
个人感觉一般用不到,大文件分词需要手动实现多进程并行,句子分词也不至于用这个。

jieba分词主要通过词典来进行分词及词性标注,两者使用了一个相同的词典。正因如此,分词的结果优劣将很大程度上取决于词典,虽然使用了HMM来进行新词发现。
jieba分词包整体的工作流程如下图所示:

下面将根据源码详细地分析各个模块的工作流程。

在之后几节中,我们在 蓝色的方框 中示范了关键步骤的输出样例或词典文件的格式样例。在本节中都采用类似的表示方式。

jieba分词中,首先通过对照典生成句子的 有向无环图 ,再根据选择的模式不同,根据词典 寻找最短路径 后对句子进行截取或直接对句子进行截取。对于未登陆词(不在词典中的词)使用 HMM 进行新词发现。

词典的格式应为
word1 freq1 word_type1
word2 freq2 word_type2

其中自定义用户词典中词性word_type可以省略。
词典在其他模块的流程中可能也会用到,为方便叙述,后续的流程图中将会省略词典的初始化部分。

图b演示了搜索引擎模式的工作流程,它会在精确模式分词的基础上,将长词再次进行切分。

在这里我们假定读者已经了解HMM相关知识,如果没有可先行阅读下一章内容中的HMM相关部分或者跳过本节。

在jieba分词中,将字在词中的位置B、M、E、S作为隐藏状态,字是观测状态,使用了词典文件分别存储字之间的表现概率矩阵(finalseg/prob_emit.py)、初始概率向量(finalseg/prob_start.py)和转移概率矩阵(finalseg/prob_trans.py)。这就是一个标准的 解码问题 ,根据概率再利用 viterbi算法 对最大可能的隐藏状态进行求解。

词性分析部分与分词模块用了同一个基础的分词器,对于词典词的词性,将直接从词典中提取,但是对于新词,词性分析部分有一个 专属的新词及其词性的发现模块
用于词性标注的HMM模型与用于分词的HMM模型相似,同样将文字序列视为可见状态,但是隐藏状态不再是单单的词的位置(B/E/M/S),而变成了词的位置与词性的组合,如(B,v)(B,n)(S,n)等等。因此其初始概率向量、转移概率矩阵和表现概率矩阵和上一节中所用的相比都要庞大的多,但是其本质以及运算步骤都没有变化。
具体的工作流程如下图所示。

jieba分词中有两种不同的用于关键词抽取的算法,分别为TextRank和TF-IDF。实现流程比较简单,其核心在于算法本身。下面简单地画出实现流程,具体的算法可以参阅下一章内容。

TextRank方法默认筛选词性,而TF-IDF方法模型不进行词性筛选。

在本章中,将会简单介绍相关的算法知识,主要包括用于新词发现的 隐马尔科夫模型 维特比算法 、用于关键词提取的 TextRank TF-IDF 算法。

HMM即隐马尔科夫模型,是一种基于马尔科夫假设的统计模型。之所以为“隐”,是因为相较于马尔科夫过程HMM有着未知的参数。在世界上,能看到的往往都是表象,而事物的真正状态往往都隐含在表象之下,并且与表象有一定的关联关系。

其中,S、O分别表示状态序列与观测序列。

如果读者还对这部分内容心存疑问,不妨先往下阅读,下面我们将以一个比较简单的例子对HMM及解码算法进行实际说明与演示,在读完下一小节之后再回来看这些式子,或许能够恍然大悟。

下面以一个简单的例子来进行阐述:
假设小明有一个网友小红,小红每天都会在朋友圈说明自己今天做了什么,并且假设其仅受当天天气的影响,而当天的天气也只受前一天天气的影响。
于小明而言,小红每天做了什么是可见状态,而小红那里的天气如何就是隐藏状态,这就构成了一个HMM模型。一个HMM模型需要有五个要素:隐藏状态集、观测集、转移概率、观测概率和初始状态概率。

即在第j个隐藏状态时,表现为i表现状态的概率。式中的n和m表示隐藏状态集和观测集中的数量。
本例中在不同的天气下,小红要做不同事情的概率也不同, 观测概率 以表格的形式呈现如下:

其中

除此之外,还需要一个初始状态概率向量π,它表示了观测开始时,即t=0时,隐藏状态的概率值。本例中我们指定 π={0,0,1}

至此,一个完整的 隐马尔科夫模型 已经定义完毕了。

HMM一般由三类问题:
概率计算问题 ,即给定 A,B,π 和隐藏状态序列,计算观测序列的概率;
预测问题 ,也成解码问题,已知 A,B,π 和观测序列,求最优可能对应的状态序列;
学习问题 ,已知观测序列,估计模型的 A,B,π 参数,使得在该模型下观测序列的概率最大,即用极大似然估计的方法估计参数。

在jieba分词中所用的是解码问题,所以此处对预测问题和学习问题不做深入探讨,在下一小节中我们将继续以本节中的例子为例,对解码问题进行求解。

在jieba分词中,采用了HMM进行新词发现,它将每一个字表示为B/M/E/S分别代表出现在词头、词中、词尾以及单字成词。将B/M/E/S作为HMM的隐藏状态,而连续的各个单字作为观测状态,其任务即为利用观测状态预测隐藏状态,并且其模型的 A,B,π 概率已经给出在文件中,所以这是一个标准的解码问题。在jieba分词中采用了 Viterbi算法 来进行求解。

Viterbi算法的基本思想是: 如果最佳路径经过一个点,那么起始点到这个点的路径一定是最短路径,否则用起始点到这点更短的一条路径代替这段,就会得到更短的路径,这显然是矛盾的;从起始点到结束点的路径,必然要经过第n个时刻,假如第n个时刻有k个状态,那么最终路径一定经过起始点到时刻n中k个状态里最短路径的点
将时刻t隐藏状态为i所有可能的状态转移路径i1到i2的状态最大值记为

下面我们继续以上一节中的例子来对viterbi算法进行阐述:
小明不知道小红是哪里人,他只能通过小红每天的活动来推断那里的天气。
假设连续三天,小红的活动依次为:“睡觉-打游戏-逛街”,我们将据此计算最有可能的天气情况。

表示第一天为雨天能够使得第二天为晴天的概率最大(也就是说如果第二天是晴天在最短路径上的话,第一天是雨天也一定在最短路径上,参见上文中Viterbi算法的基本思想)

此时已经到了最后的时刻,我们开始回溯。

其计算过程示意图如下图所示。

)的路径。

TF-IDF(词频-逆文本频率)是一种用以评估字词在文档中重要程度的统计方法。它的核心思想是,如果某个词在一篇文章中出现的频率即TF高,并且在其他文档中出现的很少,则认为这个词有很好的类别区分能力。

其中:

TextRank是一种用以关键词提取的算法,因为是基于PageRank的,所以先介绍PageRank。
PageRank通过互联网中的超链接关系确定一个网页的排名,其公式是通过一种投票的思想来设计的:如果我们计算网页A的PageRank值,那么我们需要知道哪些网页链接到A,即首先得到A的入链,然后通过入链给网页A进行投票来计算A的PR值。其公式为:

其中:

d为阻尼系数,取值范围为0-1,代表从一定点指向其他任意点的概率,一般取值0.85。
将上式多次迭代即可直到收敛即可得到结果。

TextRank算法基于PageRank的思想,利用投票机制对文本中重要成分进行排序。如果两个词在一个固定大小的窗口内共同出现过,则认为两个词之间存在连线。

公式与PageRank的基本相同。多次迭代直至收敛,即可得到结果。
在jieba分词中,TextRank设定的词窗口大小为5,将公式1迭代10次的结果作为最终权重的结果,而不一定迭代至收敛。

❸ python3怎么使用结巴分词

下面这个程序是对一个文本文件里的内容进行分词的程序:test.py

[python] view plain

#!/usr/bin/python

#-*-encoding:utf-8-*-

importjieba#导入jieba模块

defsplitSentence(inputFile,outputFile):

fin=open(inputFile,'r')#以读的方式打开文件

fout=open(outputFile,'w')#以写得方式打开文件

foreachLineinfin:

line=eachLine.strip().decode('utf-8','ignore')#去除每行首尾可能出现的空格,并转为Unicode进行处理

wordList=list(jieba.cut(line))#用结巴分词,对每行内容进行分词

outStr=''

forwordinwordList:

outStr+=word

outStr+='/'

fout.write(outStr.strip().encode('utf-8')+' ')#将分词好的结果写入到输出文件

fin.close()

fout.close()

splitSentence('myInput.txt','myOutput.txt')

写完程序之后,在Linux重点输入:python test.py即可运行程序进行分词。


输入的文件内容如下所示:

注意:第11行的 jieba.cut()返回的结构是一个可迭代的generator,可以用list(jieba.cut(...))转化为list

❹ python jieba什么用

用来分词的,jieba 可以:

  1. 把一句话拆分成多个词。

  2. 从一句话(一段话)中提取最重要的几个关键词。

最常用的功能应该就是这些吧,分词之后结合 TF-IDF,就可以开始做搜索工具和相关推荐了。

❺ 怎么是用python 语言 使用结巴分词 呢

Python代码

#encoding=utf-8
importjieba

seg_list=jieba.cut("我来到北京清华大学",cut_all=True)
print"FullMode:","/".join(seg_list)#全模式

seg_list=jieba.cut("我来到北京清华大学",cut_all=False)
print"DefaultMode:","/".join(seg_list)#默认模式

seg_list=jieba.cut("他来到了网易杭研大厦")
print",".join(seg_list)

输出:

FullMode:我/来/来到/到/北/北京/京/清/清华/清华大学/华/华大/大/大学/学

DefaultMode:我/来到/北京/清华大学

他,来到,了,网易,杭研,大厦(此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
热点内容
odbcforsqlserver 发布:2025-02-10 22:26:37 浏览:599
区块链数据存储在那里 发布:2025-02-10 22:25:48 浏览:688
c语言for死循环 发布:2025-02-10 22:24:08 浏览:522
苹果限制访问初始密码 发布:2025-02-10 22:21:31 浏览:758
为什么安卓手机一年后卡顿 发布:2025-02-10 22:15:39 浏览:731
职工信息管理系统设计c语言 发布:2025-02-10 22:15:30 浏览:118
预算法的理念 发布:2025-02-10 22:15:25 浏览:132
如何结合商圈顾客特点配置货品 发布:2025-02-10 22:10:59 浏览:593
纸币如何配置财富 发布:2025-02-10 22:00:57 浏览:706
数据库中存放的是视图的 发布:2025-02-10 21:57:46 浏览:628