inexistsql
❶ sql exist和in的区别及查询效率比较
SQL查询中in和exists的区别分析
select * from A where id in (select id from B);
select * from A where exists (select 1 from B where A.id=B.id);对于以上两种情况,in是在内存里遍历比较,而exists需要查询数据库,所以当B表数据量较大时,exists效率优于in。
1、IN()语句内部工作原理
IN()只执行一次,它查出B表中的所有id字段并缓存起来。之后,检查A表的id是否与B表中的id相等,如果相等则将A表的记录加入结果集中,直到遍历完A表的所有记录。
它的查询过程类似于以下过程:List resultSet={};
Array A=(select * from A);
Array B=(select id from B);for(int i=0;i<A.length;i++)
{
for(int j=0;j<B.length;j++) {
if(A[i].id==B[j].id) {
resultSet.add(A[i]); break;
}
}
}return resultSet;可以看出,当B表数据较大时不适合使用in(),因为它会B表数据全部遍历一次
例1:A表有10000条记录,B表有1000000条记录,那么最多有可能遍历10000*1000000次,效率很差。
例2:A表有10000条记录,B表有100条记录,那么最多有可能遍历10000*100次,遍历次数大大减少,效率大大提升。
结论:IN()适合B表比A表数据小的情况
2、EXISTS()语句内部工作原理
exists()会执行A.length次,它并不缓存exists()结果集,因为exists()结果集的内容并不重要,重要的是其内查询语句的结果集空或者非空,空则返回false,非空则返回true。
它的查询过程类似于以下过程:List resultSet={};
Array A=(select * from A);
for(int i=0;i<A.length;i++)
{ if(exists(A[i].id) { //执行select 1 from B where B.id=A.id是否有记录返回
- resultSet.add(A[i]);
- }
- }return resultSet;
当B表比A表数据大时适合使用exists(),因为它没有那么多遍历操作,只需要再执行一次查询就行。
例1:A表有10000条记录,B表有1000000条记录,那么exists()会执行10000次去判断A表中的id是否与B表中的id相等。
例2:A表有10000条记录,B表有100000000条记录,那么exists()还是执行10000次,因为它只执行A.length次,可见B表数据越多,越适合exists()发挥效果。
例3:A表有10000条记录,B表有100条记录,那么exists()还是执行10000次,还不如使用in()遍历10000*100次,因为in()是在内存里遍历比较,而exists()需要查询数据库,我们都知道查询数据库所消耗的性能更高,而内存比较很快。
结论:EXISTS()适合B表比A表数据大的情况
3、使用情况分析
当A表数据与B表数据一样大时,in与exists效率差不多,可任选一个使用。
在插入记录前,需要检查这条记录是否已经存在,只有当记录不存在时才执行插入操作,可以通过使用 EXISTS 条件句防止插入重复记录。
insert into A (name,age) select name,age from B
where not exists (select 1 from A where A.id=B.id);
EXISTS与IN的使用效率的问题,通常情况下采用exists要比in效率高,因为IN不走索引。但要看实际情况具体使用:
IN适合于外表大而内表小的情况;
EXISTS适合于外表小而内表大的情况。
4、关于EXISTS:
EXISTS用于检查子查询是否至少会返回一行数据,该子查询实际上并不返回任何数据,而是返回值True或False。
EXISTS 指定一个子查询,检测行的存在。
语法: EXISTS subquery
参数: subquery 是一个受限的 SELECT 语句 (不允许有 COMPUTE 子句和 INTO 关键字)。
结果类型: Boolean 如果子查询包含行,则返回 TRUE ,否则返回 FLASE 。
结论:
- select * from A where exists (select 1 from B where A.id=B.id)
EXISTS(包括 NOT EXISTS )子句的返回值是一个boolean值。 EXISTS内部有一个子查询语句(SELECT ... FROM...),我将其称为EXIST的内查询语句。其内查询语句返回一个结果集, EXISTS子句根据其内查询语句的结果集空或者非空,返回一个布尔值。
一种通俗的可以理解为:将外查询表的每一行,代入内查询作为检验,如果内查询返回的结果取非空值,则EXISTS子句返回TRUE,这一行行可作为外查询的结果行,否则不能作为结果。
分析器会先看语句的第一个词,当它发现第一个词是SELECT关键字的时候,它会跳到FROM关键字,然后通过FROM关键字找到表名并把表装入内存。接着是找WHERE关键字,如果找不到则返回到SELECT找字段解析,如果找到WHERE,则分析其中的条件,完成后再回到SELECT分析字段。最后形成一张我们要的虚表。
WHERE关键字后面的是条件表达式。条件表达式计算完成后,会有一个返回值,即非0或0,非0即为真(true),0即为假(false)。同理WHERE后面的条件也有一个返回值,真或假,来确定接下来执不执行SELECT。
分析器先找到关键字SELECT,然后跳到FROM关键字将STUDENT表导入内存,并通过指针找到第一条记录,接着找到WHERE关键字计算它的条件表达式,如果为真那么把这条记录装到一个虚表当中,指针再指向下一条记录。如果为假那么指针直接指向下一条记录,而不进行其它操作。一直检索完整个表,并把检索
java">出来的虚拟表返回给用户。EXISTS是条件表达式的一部分,它也有一个返回值(true或false)。
作者:IronM
链接:https://www.jianshu.com/p/f212527d76ff
来源:简书
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
❷ sql中in和exist语句的区别
两者都能实现表功能查询,主要区别如下:
1、适用表的类型不同。
in是子查询为驱动表,外面的表为被驱动表,故适用于子查询结果集小而外面的表结果集大的情况。
exists是外面的表位驱动表,子查询里面的表为被驱动表,故适用于外面的表结果集小而子查询结果集大的情况。
2、子查询关联不同。
exists一般都是关联子查询。对于关联子查询,必须先执行外层查询,接着对所有通过过滤条件的记录,执行内层查询。外层查询和内层查询相互依赖,因为外层查询会把数据传递给内层查询。
in则一般都是非关联子查询,非关联子查询则必须先完成内层查询之后,外层查询才能介入。
3、执行次数不同。
IN 语句:只执行一次,确定给定的值是否与子查询或列表中的值相匹配。in在查询的时候,首先查询子查询的表,然后将内表和外表做一个笛卡尔积,然后按照条件进行筛选。所以相对内表比较小的时候,in的速度较快。
EXISTS语句:执行次数根据表的长度而定。指定一个子查询,检测行的存在。遍历循环外表,然后看外表中的记录有没有和内表的数据一样的。匹配上就将结果放入结果集中。
❸ SQL语句中“in”和“exist”有什么区别
本文主要分析了in和exists的区别与执行效率的问题:
in可以分为三类:
1、形如select * from t1 where f1 in ( 'a ', 'b '),应该和以下两种比较效率。
select * from t1 where f1= 'a ' or f1= 'b '
或者
select * from t1 where f1 = 'a ' union all select * from t1 f1= 'b '
你可能指的不是这一类,这里不做讨论。
2、形如
select * from t1 where f1 in (select f1 from t2 where t2.fx= 'x '),
其中子查询的where里的条件不受外层查询的影响,这类查询一般情况下,自动优化会转成exist语句,也就是效率和exist一样。
3、形如
select * from t1 where f1 in (select f1 from t2 where t2.fx=t1.fx),
其中子查询的where里的条件受外层查询的影响,这类查询的效率要看相关条件涉及的字段的索引情况和数据量多少,一般认为效率不如exists。
除了第一类in语句都是可以转化成exists 语句的,一般编程习惯应该是用exists而不用in.
A,B两个表,
(1)当只显示一个表的数据如A,关系条件只一个如ID时,使用IN更快:
select * from A where id in (select id from B)
(2)当只显示一个表的数据如A,关系条件不只一个如ID,col1时,使用IN就不方便了,可以使用EXISTS:
select * from Awhere exists (select 1 from B where id = A.id and col1 = A.col1)
(3)当只显示两个表的数据时,使用IN,EXISTS都不合适,要使用连接:
select * from A left join B on id = A.id
所以使用何种方式,要根据要求来定。
这是一般情况下做的测试:
测试结果:
set statistics io on select * from sysobjects where exists (select 1 from syscolumns where id=syscolumns.id) select * from sysobjects where id in (select id from syscolumns ) set statistics io off (47 行受影响)
表 'syscolpars '。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 2 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 'sysschobjs '。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
(44 行受影响)
表 'syscolpars '。扫描计数 47,逻辑读取 97 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 'sysschobjs '。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
set statistics io on select * from syscolumns where exists (select 1 from sysobjects where id=syscolumns.id) select * from syscolumns where id in (select id from sysobjects ) set statistics io off
(419 行受影响)
表 'syscolpars '。扫描计数 1,逻辑读取 10 次,物理读取 0 次,预读 15 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 'sysschobjs '。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
(419 行受影响)
表 'syscolpars '。扫描计数 1,逻辑读取 10 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 'sysschobjs '。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
测试结果(总体来讲exists比in的效率高):
效率:条件因素的索引是非常关键的
把syscolumns 作为条件:syscolumns 数据大于sysobjects
用in
扫描计数 47,逻辑读取 97 次,
用exists
扫描计数 1,逻辑读取 3 次
把sysobjects作为条件:sysobjects的数据少于syscolumns
exists比in多预读 15 次
❹ sql中in和exists的区别效率问题 转
in和exists
in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询。
如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in:
例如:表A(小表),表B(大表)1:select * from A where cc in (select cc from B)
效率低,用到了A表上cc列的索引;select * from A where exists(select cc from B where cc=A.cc)
效率高,用到了B表上cc列的索引。
相反的2:select * from B where cc in (select cc from A)
效率高,用到了B表上cc列的索引;select * from B where exists(select cc from A where cc=B.cc)
效率低,用到了A表上cc列的索引。
not in 和not exists如果查询语句使用了not in 那么内外表都进行全表扫描,没有用到索引;而not extsts 的子查询依然能用到表上的索引。所以无论那个表大,用not exists都比not in要快。
in 与 =的区别
select name from student where name in ('zhang','wang','li','zhao');与
select name from student where name='zhang' or name='li' or
name='wang' or name='zhao'
的结果是相同的。
转的
http://..com/link?url=JYAd0XwcGuw_iczn2GEo-0dlXPx8VAJ5yioHevPcHMn47Gl-
❺ 在sql语句多表连接中,in、exists、join哪个效率更高一点
EXISTS、IN与JOIN,都可以用来实现形如“查询A表中在(或不在)B表中的记录”的查询逻辑。x0dx0ax0dx0a在查询的两个表大小相当的情况下,3种查询方式的执行时间通常是:x0dx0aEXISTS <= IN <= JOINx0dx0aNOT EXISTS <= NOT IN <= LEFT JOINx0dx0a只有当表中字段允许NULL时,NOT IN的方式最慢:x0dx0aNOT EXISTS <= LEFT JOIN <= NOT INx0dx0ax0dx0a但是如果两个表中一个较小,一个较大,则子查询表大的用exists,子查询表小的用in,因为in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询。而无论那个表大,用not exists都比not in要快。这是因为如果查询语句使用了not in 那么内外表都进行全表扫描,没有用到索引;而not extsts 的子查询依然能用到表上的索引。x0dx0ax0dx0aIN的好处是逻辑直观简单(通常是独立子查询);缺点是只能判断单字段,并且当NOT IN时效率较低,而且NULL会导致不想要的结果。x0dx0aEXISTS的好处是效率高,可以判断单字段和组合字段,并不受NULL的影响;缺点是逻辑稍微复杂(通常是相关子查询)。x0dx0aJOIN用在这种场合,往往是吃力不讨好。JOIN的用途是联接两个表,而不是判断一个表的记录是否在另一个表。