当前位置:首页 » 编程语言 » pythonic

pythonic

发布时间: 2023-06-20 07:24:42

‘壹’ PHP开发人员的python基础知识

PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言。语法吸收了c语言、Java和Perl的特点,利于学习,使用广泛,主要适用于Web开发领域。那么PHP开发人员的Python基础知识都有哪些呢?以下仅供参考!

常用缩略语

Ajax:异步 JavaScript + XML

XML:可扩展标记语言(Extensible Markup Language)

什么是 Python?

Python 的定义是一种 “通用的高级编程语言”。它以简洁性和易用性着称,而且是少有的几种对空格和缩进有要求的语言之一。Python 的主要作者 Guido Van Rossum 在社区中仍然非常活跃,并且被人们戏称为仁慈的领导。

Python 的灵活性和紧凑性是值得称赞的。它支持面向对象编程、结构化编程、面向方面编程以及函数编程等。Python 采用小内核设计,但具备大量扩展库,从而确保了该语言的紧凑性和灵活性。

从语法的角度来说,您会发现 Python 的简洁性异常突出——几乎可以说是一种纯粹的境界。PHP 开发人员要么会对这种方法的语法深深陶醉,要么会发现它的局限性。这主要取决于您自己的见解。Python 社区推动这种美感的态度是非常明确的,它们更加重视的是美学和简洁性,而不是灵动的技巧。已形成 Perl 传统(“可以通过多种方式实现它”)的 PHP 开发人员(像我自己)将面对一种完全相反的哲学(“应该只有一种方法可以实现它”)。

事实上,该社区定义了一种特有的代码风格术语,即 Python 化(pythonic)。您可以说您的代码是 Python 化,这是对 Python 术语的良好运用,同时还可展现语言的自然特性。本文并不打算成为 Pythonista(或 Pythoneer),但如果您想继续 Python 之路,那么千万不能错过本文的知识点。就像 PHP 有自己的编程风格,Perl 有自己的概念方法,学习 Python 语言必然也需要开始用该语言来思考问题。

另一个要点:在撰写本文时,Python 的最新版本是 V3.0,但本文主要侧重于 Python V2.6。Python V3.0 并不能向后兼容之前的版本,而且 V2.6 是使用最为广泛的版本。当然,您可以根据需求使用自己喜好的版本。

Python 与 PHP 有何不同?

一般来说,PHP 是一种 Web 开发语言。是的,它提供了一个命令行接口,并且甚至可用于开发嵌入式应用程序,但它主要还是用于 Web 开发。相反,Python 是一种脚本语言,并且也可用于 Web 开发。从这方面来说,我知道我会这样说——它比 PHP 更加接近 Perl。(当然,在其他方面,它们之间并无实际不同。我们继续往下看。)

PHP 的语法中充斥着美元符号($)和大括号({}),而 Python 相对来说则更加简洁和干净。PHP 支持 switch 和 do...while 结构,而 Python 则不尽然。PHP 使用三元操作符(foo?bar:baz)和冗长的函数名列表,而命名约定更是无所不有;相反,您会发现 Python 要简洁多了。PHP 的数组类型可同时支持简单列表和字典或散列,但 Python 却将这两者分开。

Python 同时使用可变性和不变性的概念:举例来说,tuple 就是一个不可变的列表。您可以创建 tuple,但在创建之后不能修改它。这一概念可能要花些时间来熟悉,但对于避免错误极为有效。当然,更改 tuple 的惟一方法是复制它。因此,如果您发现对不可变对象执行了大量更改,则应该重新考量自己的方法。

之前提到,Python 中的缩进是有含义的:您在刚开始学习该语言时会对此非常难以适应。您还可以创建使用关键字作为参数的函数和方法——这与 PHP 中的标准位置参数迥然不同。面向对象的追随者会对 Python 中真正的面向对象思想感到欣喜,当然还包括它的 “一级” 类和函数。如果您使用非英语语言,则会钟爱于 Python 强大的.国际化和 Unicode 支持。您还会喜欢 Python 的多线程功能;这也是最开始令我为之着迷的特性之一。

综上所述,PHP 和 Python 在许多方面都彼此类似。您可以方便地创建变量、循环,使用条件和创建函数。您甚至可以轻松地创建可重用的模块。两种语言的用户社区都充满活力和激情。PHP 的用户群体更加庞大,但这主要归因于它在托管服务器及 Web 专注性方面的优势和普及性。

很好 简要介绍到此为止。我们开始探索之旅。

使用 Python

清单 1 展示了一个基本的 Python 脚本。

清单 1. 一个简单的 Python 脚本

for i in range(20):

print(i)

清单 2 展示了脚本的必然结果。

清单 2. 清单 1 的结果

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

在深入探索之前,我们先来了解一些预备知识。首先从变量开始。

变量

可以看到,表示变量并不需要任何特殊的字符。变量 i 就是一个纯粹的 i——毫无特殊之处。表示代码块或语言结束也不需要任何特殊字符(比如分号和括号);只需要在 for 行使用一个简单的冒号即可(:)。还需注意,缩进会向 Python 指示哪些内容属于 for 循环。举例来说,清单 3 中的代码会在循环中为各编号输出一个说明。

清单 3. 为各循环添加一条语句

for i in range(20):

print(i)

print('all done?')

相反,清单 4 中的代码会在循环结束处输出一条说明。

清单 4. 在循环后添加一条语句

for i in range(20):

print(i)

print('all done!')

现在,我第一次看到这样的代码时,我认为这完全是无稽之谈。什么?让我相信换行和缩进能保证代码的结构和运行?请相信我,不用多久,您就会习惯它(但我需要承认必须到达到分号处才会结束语句的运行)。如果您与其他开发人员共同开发 Python 项目,则会发现这种可读性的用处是多么大了。您不再像以前那样总是猜测 “这个聪明的家伙在这里究竟想干些什么?”

在 PHP,您使用 = 操作符为变量分配值(参见 清单 5)。在 Python 中,您使用相同的操作符,只是需要标记或指向值。对于我来说,它就是赋值操作而已,我不需要过多担心专门的术语。

清单 5. 创建变量

yorkie = 'Marlowe' #meet our Yorkie Marlowe!

mutt = 'Kafka' #meet our mutt Kafka

print(mutt) #prints Kafka

Python 的变量名称约定与 PHP 类似:您在创建变量名时只能使用字母、数字和下划线(_)。同样,变量名的第一个字符不能是数字。Python 变量名是区分大小写的,并且您不能使用特定的 Python 关键字(比如 if、else、while、def、or、and、not、in 和 is 开始符)作为变量名。这没有什么值得奇怪的。

Python 允许您随意执行基于字符串的操作。清单 6 中的大多数操作应该都是您熟悉的。

清单 6. 常见的基于字符串的操作

yorkie = 'Marlowe'

mutt = 'Kafka'

ylen = len(yorkie) #length of variable yorkie

print(ylen) #prints 7

print(len(yorkie)) #does the same thing

len(yorkie) #also does the same thing, print is implicit

print(yorkie.lower()) #lower cases the string

print(yorkie.strip('aeiou')) #removes vowels from end of string

print(mutt.split('f')) #splits "Kafka" into ['Ka', 'ka']

print(mutt.count('a')) #prints 2, the number of a's in string

yorkie.replace('a','4') #replace a's with 4's

条件语句

您已经了解了如何使用 for 循环;现在,我们来讨论条件语句。您会发现 Phyon 中的条件语句与 PHP 基本相同:您可以使用熟悉的 if/else型结构,如清单 7 所示。

清单 7. 一个简单的条件测试

yorkie = 'Marlowe'

mutt = 'Kafka'

if len(yorkie) > len(mutt):

print('The yorkie wins!')

else:

print('The mutt wins!')

您还可以使用 if/elif/else(elif,等价于 PHP 中的 elseif)创建更加复杂的条件测试,如清单 8 所示。

清单 8. 一个比较复杂的条件测试

yorkie = 'Marlowe'

mutt = 'Kafka'

if len(yorkie) + len(mutt) > 15:

print('The yorkie and the mutt win!')

elif len(yorkie) + len(mutt) > 10:

print('Too close to tell!')

else:

print('Nobody wins!')

您可能会说,目前为止并没有什么与众不同的地方:甚本上和想象中没有太大区别。现在,我们来看 Python 处理列表的方式,您会发现两种语言之间的不同之处。

列表

一种常用的列表类型是 tuple,它是不可变的。在 tuple 中载入一系列值之后,您不会更改它。Tuple 可以包含数字、字符串、变量,甚至其他 tuples。Tuples 从 0 开始建立索引,这很正常;您可以使用 -1 索引访问最后一个项目。您还可以对 tuple 运行一些函数(请参见清单 9)。

清单 9. Tuples

items = (1, mutt, 'Honda', (1,2,3))

print items[1] #prints Kafka

print items[-1] #prints (1,2,3)

items2 = items[0:2] #items2 now contains (1, 'Kafka') thanks to slice operation

'Honda' in items #returns TRUE

len(items) #returns 4

items.index('Kafka') #returns 1, because second item matches this index location

列表与 tuple 类似,只不过它们是可变的。创建列表之后,您可以添加、删除和更新列表中的值。列表使用方括号,而不是圆括号(()),如清单 10 所示。

清单 10. 列表

groceries = ['ham','spam','eggs']

len(groceries) #returns 3

print groceries[1] #prints spam

for x in groceries:

print x.upper() #prints HAM SPAM EGGS

groceries[2] = 'bacon'

groceries #list is now ['ham','spam','bacon']

groceries.append('eggs')

groceries #list is now ['ham', 'spam', 'bacon', 'eggs']

groceries.sort()

groceries #list is now ['bacon', 'eggs', 'ham', 'spam']

字典类似于关联数组或散列;它使用键值对来存储和限制信息。但它不使用方括号和圆括号,而是使用尖括号。与列表类似,字典是可变的,这意味着您可以添加、删除和更新其中的值(请参见清单 11)。

清单 11. 字典

colorvalues = {'red' : 1, 'blue' : 2, 'green' : 3, 'yellow' : 4, 'orange' : 5}

colorvalues #prints {'blue': 2, 'orange': 5, 'green': 3, 'yellow': 4, 'red': 1}

colorvalues['blue'] #prints 2

colorvalues.keys() #retrieves all keys as a list:

#['blue', 'orange', 'green', 'yellow', 'red']

colorvalues.pop('blue') #prints 2 and removes the blue key/value pair

colorvalues #after pop, we have:

#{'orange': 5, 'green': 3, 'yellow': 4, 'red': 1}

在 Python 中创建一个简单的脚本

现在,您已经对 Python 有了一定的了解。接下来,我们将创建一个简单的 Python 脚本。该脚本将读取位于您的服务器 /tmp 目录下的 PHP 会话文件的数量,并在日志文件中写入摘要报告。在该脚本中,您将学习如何导入特定函数的模块,如何使用文件,以及如何写入日志文件。您还将设置一系列变量来跟踪所收集的信息。

清单 12 展示了整个脚本。打开一个编辑器,并将代码粘贴到其中,然后在系统中将该文件保存为 tmp.py。然后,对该文件运行 chmod + x,使它成为可执行文件(假定您使用 UNIX? 系统)。

清单 12. tmp.py

#!/usr/bin/python

import os

from time import strftime

stamp = strftime("%Y-%m-%d %H:%M:%S")

logfile = '/path/to/your/logfile.log'

path = '/path/to/tmp/directory/'

files = os.listdir(path)

bytes = 0

numfiles = 0

for f in files:

if f.startswith('sess_'):

info = os.stat(path + f)

numfiles += 1

bytes += info[6]

if numfiles > 1:

title = 'files'

else:

title = 'file'

string = stamp + " -- " + str(numfiles) + " session "

+ title +", " + str(bytes) + " bytes "

file = open(logfile,"a")

file.writelines(string)

file.close()

在第一行中,您可以看到一个 hash-bang 行:它用于标识 Python 解释器的位置。在我的系统中,它位于 /usr/bin/python。请根据系统需求调整这一行。

接下来的两行用于导入特定的模块,这些模块将帮助您执行作业。考虑到脚本需要处理文件夹和文件,因此您需要导入 os 模块,因为其中包含各种函数和方法,可帮助您列出文件、读取文件和操作文件夹。您还需要写入一个日志文件,因此可以为条目添加一个时间戳 — 这就需要使用时间函数。您不需要所有时间函数,只需要导入 strftime函数即可。

在接下来的六行中,您设置了一些变量。第一个变量是 stamp,其中包含一个日期字符串。然后,您使用 strftime 函数创建了一个特定格式的时间戳 — 在本例中,时间戳的格式为 2010-01-03 12:43:03。

接下来,创建一个 logfile 变量,并在文件中添加一个实际存储日志文件消息的路径(该文件不需要实际存在)。为简单起见,我在 /logs 文件夹中放置了一个日志文件,但您也可以将它放置在别处。同样,path 变量包含到 /tmp 目录的路径。您可以使用任何路径,只要使用斜杠作为结束即可 (/)。

接下来的三个变量也非常简单:files 列表包含指定路径中的所有文件和文件夹,另外还包含 bytes 和 numfiles 两个变量。这两个变量都设置为 0;脚本会在处理文件时递增这些值。

完成所有这些定义之后,接下来就是脚本的核心了:一个简单的 for 循环,用于处理文件列表中的各文件。每次运行循环时,脚本都会计算文件名;如果它以 sess_ 开头,则脚本会对该文件运行 os.stat(),提取文件数据(比如创建时间、修改时间和字节大小),递增 numfiles 计数器并将该文件的字节大小累计到总数中。

当循环完成运行后,脚本会检查 numfiles 变量中的值是否大于 1。如果大于 1,则会将一个新的 title 变量设置为 files;否则,title 将被设置为单数形式的 file。

脚本的最后部分也非常简单:您创建了一个 string 变量,并在该变量中添加了一行以时间戳开始的数据,并且其后还包含 numfiles(已转换为字符串)和字节(也已转换为字符串)。请注意继续字符();该字符可允许代码运行到下一行。它是一个提高可读性的小技巧。

然后,您使用 open() 函数以附加模式打开日志文件(毕竟始终需要在该文件中添加内容),writelines() 函数会将字符串添加到日志文件中,而 close() 函数用于关闭该文件。

现在,您已经创建了一个简单的 Python 脚本。该脚本可用于完成许多任务,举例来说,您可以设置一个 cron作业来每小时运行一次这个脚本,以帮助您跟踪 24 小时内所使用的 PHP 会话的数量。您还可以使用 jQuery 或其他一些 JavaScript 框架通过 Ajax 连接这个脚本,用于为您提供日志文件提要(如果采用这种方式,则需要使用 print命令来返回数据)。

‘贰’ python做数据分析怎么样

我使用python这门语言也有三年了,被其简洁、易读、强大的库所折服,我已经深深爱上了python。其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。

在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。

由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是小编认为,python是一门高级语言,其生产效率更高,程序员的时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。


Python强大的计算能力依赖于其丰富而强大的库:

  • Numpy

Numerical Python的简称,是Python科学计算的基础包。其功能:

1. 快速高效的多维数组对象ndarray。

2. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。

3. 线性代数运算、傅里叶变换,以及随机数生成。

4. 用于将C、C++、Fortran代码集成到Python的工具。


除了为Python提供快速的数组处理能力,NumPy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy数组中的数据,无需进行任何数据复制工作。


  • SciPy

是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包:

1. scipy.integrate:数值积分例程和微分方程求解器。

2. scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。

3. scipy.optimize:函数优化器(最小化器)以及根查找算法。

4. scipy.signal:信号处理工具。

5. scipy.sparse:稀疏矩阵和稀疏线性系统求解器。

6. scipy.special:SPECFUN(这是一个实现了许多常用数学函数(如伽玛函数)的Fortran库)的包装器。

7. scipy.stats:标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法。

8. scipy.weave:利用内联C++代码加速数组计算的工具。


注:NumPy跟SciPy的有机结合完全可以替代MATLAB的计算功能(包括其插件工具箱)。


  • SymPy

是python的数学符号计算库,用它可以进行数学表达式的符号推导和演算。


  • pandas

提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

pandas兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。

对于使用R语言进行统计计算的用户,肯定不会对DataFrame这个名字感到陌生,因为它源自于R的data.frame对象。但是这两个对象并不相同。R的data.frame对象所提供的功能只是DataFrame对象所提供的功能的一个子集。也就是说pandas的DataFrame功能比R的data.frame功能更强大。


  • matplotlib

是最流行的用于绘制数据图表的Python库。它最初由John D. Hunter(JDH)创建,目前由一个庞大的开发人员团队维护。它非常适合创建出版物上用的图表。它跟IPython(马上就会讲到)结合得很好,因而提供了一种非常好用的交互式数据绘图环境。绘制的图表也是交互式的,你可以利用绘图窗口中的工具栏放大图表中的某个区域或对整个图表进行平移浏览。


  • TVTK

是python数据三维可视化库,是一套功能十分强大的三维数据可视化库,它提供了Python风格的API,并支持Trait属性(由于Python是动态编程语言,其变量没有类型,这种灵活性有助于快速开发,但是也有缺点。而Trait库可以为对象的属性添加检校功能,从而提高程序的可读性,降低出错率。) 和NumPy数组。此库非常庞大,因此开发公司提供了一个查询文档,用户可以通过下面语句运行它:

>>> from enthought.tvtk.toolsimport tvtk_doc

>>> tvtk_doc.main()


  • Scikit-Learn

是基于python的机器学习库,建立在NumPy、SciPy和matplotlib基础上,操作简单、高效的数据挖掘和数据分析。其文档、实例都比较齐全。


小编建议:初学者使用python(x, y),其是一个免费的科学和工程开发包,提供数学计算、数据分析和可视化展示。非常方便!

其官网:www.pythonxy.com(由于某种原因,国内上不去,需要翻墙)

下载地址:ftp://ftp.ntua.gr/pub/devel/pythonxy/(小编到网上搜到的一个地址,亲测可以用)

下图展示了python(x, y) 强大功能。

‘叁’ python运维需要会什么

随着移动互联网的普及,服务器运维所面临的挑战也随之越来越大。当规模增长到一定程度,手动管理方式已经无法应对,自动化运维成为解决问题的银弹。
Python凭借其灵活性,在自动化运维方面已经被广泛使用,能够大大提高运维效率,服务器集群的规模越大,优势越明显。现在不论是Linux运维工程师还是Unix运维工程师都需要掌握Python,以提高运维效率。
python运维需要会什么?
● 掌握Python的语法和一些常用库的使用
● 掌握自己特定领域的库,掌握pythonic写法,非常熟悉Python的特性
● Linux基础
相关推荐:《Python教程》以上就是小编分享的关于python运维需要会什么的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

‘肆’ 如何系统地自学 Python

是否非常想学好Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?幸运的是,Python是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。Python的设计哲学之一就是简单易学,体现在两个方面:语法简洁明了:相对Ruby和Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。切入点很多:Python可以让你可以做很多事情,科学计算和数据分析、爬虫、Web网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。废话不多说,学会一门语言的捷径只有一个:GettingStarted¶起步阶段任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。°1硬知识“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个Java程序员去学习Python,他可以很快的将Java中的学到的面向对象的知识map到Python中来,因此能够快速掌握Python中面向对象的特性。如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。下面列出了一些适合初学者入门的教学材料:❖“笨方法学Python”:awesome-python·GitHub这里列出了你在尝试解决各种实际问题时,Python社区已有的工具型类库,如下图所示:你可以按照实际需求,寻找你需要的类库。至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。°2书籍方面:这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:科学和数据分析:❖“集体智慧编程”:集体智慧编程(豆瓣)❖“数学之美”:数学之美(豆瓣)❖“统计学习方法”:统计学习方法(豆瓣)❖“”:(豆瓣)❖“数据科学实战”:数据科学实战(豆瓣)❖“数据检索导论”:信息检索导论(豆瓣)爬虫:❖“HTTP权威指南”:HTTP权威指南(豆瓣)Web网站:❖“HTML&CSS设计与构建网站”:HTML&CSS设计与构建网站(豆瓣)列到这里已经不需要继续了。聪明的你一定会发现上面的大部分书籍,并不是讲Python的书,而的是专业知识。事实上,这里所谓“跳出Python,拥抱世界”,其实是发现Python和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,的取决于自己的专业知识。¶深入阶段这个阶段的你,对Python几乎了如指掌,那么你一定知道Python是用C语言实现的。可是Python对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开Python的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。这里推荐一本书:“Python源码剖析”:Python源码剖析(豆瓣)这本书把Python源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对C语言内存模型和指针有着很好的理解。另外,Python本身是一门杂糅多种范式的动态语言,也就是说,相对于C的过程式、Haskell等的函数式、Java基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在Python中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到Python语言的根源。这里推荐一门公开课“编程范式”:斯坦福大学公开课:编程范式讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读Python源码也有大有帮助。Python的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如Django、Tornado等等。在它们的源代码中淘金,也是个不错的选择。¶最后的话每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人。虽然听上去有点鸡汤,但是这是事实。希望想学Python想学编程的同学,不要犹豫了,看完这篇文章,Justgettingstarted~

热点内容
战舰少女r红茶脚本 发布:2025-02-12 04:05:05 浏览:465
峰火战国服务器什么时候开 发布:2025-02-12 03:56:31 浏览:175
电脑配置慢怎么解压 发布:2025-02-12 03:52:18 浏览:716
androidsdk功能 发布:2025-02-12 03:43:07 浏览:87
阿里云服务器可以访问外网吗 发布:2025-02-12 03:42:20 浏览:880
脚本的生命周期顺序 发布:2025-02-12 03:37:28 浏览:369
素数加密 发布:2025-02-12 03:37:27 浏览:803
ar源码 发布:2025-02-12 03:32:04 浏览:656
阅图文件夹 发布:2025-02-12 03:30:22 浏览:762
旧手机存储资料 发布:2025-02-12 03:29:42 浏览:472